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Course schedule

Groups of rigid motions of Euclidean space. Rotation and reflection groups in two and
three dimensions. Lengths of curves. [2]

Spherical geometry: spherical lines, spherical triangles and the Gauss-Bonnet theorem.
Stereographic projection and Mbius transformations. [3]

Triangulations of the sphere and the torus, Euler number. [1]

Riemannian metrics on open subsets of the plane. The hyperbolic plane. Poincaré
models and their metrics. The isometry group. Hyperbolic triangles and the Gauss-
Bonnet theorem. The hyperboloid model. [4]

Embedded surfaces in R3. The first fundamental form. Length and area. Examples. [1]

Length and energy. Geodesics for general Riemannian metrics as stationary points of
the energy. First variation of the energy and geodesics as solutions of the corresponding
Euler-Lagrange equations. Geodesic polar coordinates (informal proof of existence).
Surfaces of revolution. [2]

The second fundamental form and Gaussian curvature. For metrics of the form du2 +
G(u, v) dv2, expression of the curvature as

√
Guu/

√
G . Abstract smooth surfaces and

isometries. Euler numbers and statement of Gauss-Bonnet theorem, examples and ap-
plications. [3]

Appropriate books

P.M.H. Wilson Curved Spaces. CUP, January 2008 (60 hardback, 24.99 paperback).

M. Do Carmo Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., En-
glewood Cliffs, N.J., 1976 (42.99 hardback)

A. Pressley Elementary Differential Geometry. Springer Undergraduate Mathematics
Series, Springer-Verlag London Ltd., 2001 (19.00 paperback)

E. Rees Notes on Geometry. Springer, 1983 (18.50 paperback)

M. Reid and B. Szendroi Geometry and Topology. CUP, 2005 (24.99 paperback)
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1 Euclidean geometry

1.1 Geometry in Rn

Lecture 1
For v, w ∈ Rn, the dot product is defined as

v · w =
n∑
i=1

viwi.

The norm or “length” of a vector is

|v| =
√
v · v

and this satisfies the triangle inequality:

|v + w| ≤ |v|+ |w| ,

with equality if and only if v = kw or w = kv, for some k ≥ 0.

Distance

For x, y ∈ Rn, d(x, y) = |x− y| defines the Euclidean metric on Rn. We call this the
Euclidean metric because it satisfies:

(i) d(x, y) ≥ 0 for all x, y ∈ Rn, with equality if and only if x = y;

(ii) d(x, y) = |x− y| = d(y, x), so it is symmetric;

(iii) d(x, y) = |x− y|+ |y − z| ≥ |x− z| = d(x, z), the triangle inequality.

So it satisfies the axioms for a metric space.

Lines

The line through x with direction vector v is the set{
x+ tv | t ∈ R

}
.

The ray starting at x with direction vector v is the set{
x+ tv | t ∈ R, t ≥ 0

}
.

The line segment from x to y is the set{
x+ t (y − x) | t ∈ [0, 1]

}
.

Two direction vectors determine the same line through x if and only if they are scalar
multiples of each other.

Two direction vectors determine the same ray through x if they are positive scalar
multiples of each other.

Proposition 1.1. Two distinct points lie on a unique line.

Proof. If x and y are points, then y = x+ tv =⇒ tv = y − x, and the direction vector
is determined up to a scalar multiple.

Angles

If R1 and R2 are rays starting at x with direction vectors v1, v2, then the angle between
R1 and R2 is 0 ≤ θ ≤ π satisfying

cos θ =
v1 · v2

|v1| |v2|
.
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WeLecture 2 want to show that the shortest path between two points in Euclidean space is a line.
To do this, we need to have a notion of the length of a path. Once we have this, then
the result becomes pretty tautological.

Definition. A path in a metric space X is a continuous map γ : [0, 1]→ X.

•

•

γ(1)

γ(0)

If f : [0, 1] → [0, 1] is a continuous bijection (implying that f is a homeomor-
phism, since Rn is compact, and so f−1 is continuous), then we say that γ ◦ f is a
reparametrisation of γ.

Now we want to define a notion of distance along a path. Suppose we approximate our
path by a series of line segments. Then it should be intuitive that the length of our path
is at least as long as any such approximation.

•

•

•
•

t0

t1

t2

t3

t4•

Let’s try to formalise this. Let A = {0 = t0 < t1 < · · · < tn = 1} ⊂ [0, 1] be a finite
subset. Now define

LA(γ) =
n∑
i=1

d(γ(ti), γ(ti−1)).

It should be clear that if we increase an extra point, tj , that this length increases.

•

• •

•
•

t0

t1

t2

t3

t4

tj

•

If we let A ′ =
{

0 = t0 < t1 < · · · < tj−1 < tj < tj < · · · < tn = 1
}

, then by the triangle
inequality, LA ′(γ) ≥ LA(γ). Thus:

LA(γ) ≥ L{0,1}(γ) = d(γ(0), γ(1)).

Also we have that if A ⊂ A ′, then LA(γ) ≤ LA ′(γ).
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With these thoughts, we’re ready to define the length of a path, and the following
definition seems natural:

Definition. The length of a path γ is

L(γ) = sup
A
LA(γ)

as A runs over the finite subsets of [0, 1].

Example 1.2. The line segment from x to y is parameterised by γ(t) = x+t(y−x).

The triangle inequality in Rn states that

|x− y|+ |y − z| ≥ |x− z| ,

with equality if and only if any of the three equivalent conditions hold:

• x− y is a nonnegative multiple of y − z;
• x− z is a ≥ 1 multiple of y − z;
• y lies on the line segment from x to z.

In particular, this last condition means that if γ is a line segment from x to y, then
LA(γ) = d(x, y) for all A, and so

L(γ) = sup
A
LA(γ) = d(x, y).

Now let’s check that there isn’t some other path with the same length as the line segment.
First we need the following lemma:

Lemma 1.3. If γ ◦ f is a reparameterisation of γ, then L(γ ◦ f) = L(γ).

Proof. We have LA(γ ◦ f) = Lf(A)(γ). Also LA(γ ◦ f) ≤ supA LA(γ) = L(γ), and so
L(γ ◦ f) ≤ L(γ).

Similarly γ = (γ ◦ f) ◦ f−1 implies L(γ) = L(γ ◦ f ◦ f−1) ≤ L(γ ◦ f).

Hence L(γ) = L(γ ◦ f).

Proposition 1.4. The line segment from x to y is the shortest path from x to y.
Precisely, if γ0 is the line segment from x to y and γ1 is a path from x to y with
L(γ0) = L(γ1) = d(x, y), then γ1 = γ0 ◦ f , where f : [0, 1] → [0, 1] is continuous, and
t ≥ s =⇒ f(t) ≥ f(s).

This does not imply that f is invertible. We will call this property a weak reparameter-
isation.

Proof. We’ve already shown that L(γ1) ≥ d(x, y) = L(γ0). To have equality, we need
equality everywhere in the triangle inequality.

That means that γ1(t) is on the line segment for all t. (Otherwise L{0,t,1}(γ1) ≥ d(x, y).

Thus γ1(t) = γ0(f(t)) for some f : [0, 1]→ [0, 1]. Now f(t) = γ−1
0 ◦ γ1(t) is cts.

Suppose that f(s) ≥ f(t) for t ≥ s. Then L{0,s,t,1}(γ1) ≥ d(x, y).

So if L(γ1) = L(γ0), then t ≥ s =⇒ f(t) ≥ f(s), and f is a bijection.
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Proposition 1.5. Suppose γ : [0, 1]→ Rn is continuously differentiable. Then

L(γ) =

∫ 1

0

∣∣γ ′(t)∣∣ dt.
Proof. Write γ ′(t) = (γ ′1(t), . . . , γ ′n(t)). Now γ ′i (t) is a continuous function on a compact
set, so is uniformly continuous. That is, given ε > 0, there is some δ > 0 such that∣∣γ ′i (t)− γ ′i (s)∣∣ < ε whenever |t− s| < δ.

By the mean value theorem,

γi(t)− γi(s) = (t− s) γ ′i (ti),

with s ≤ ti ≤ t. So if |t− s| < δ, then∣∣γi(t)− γi(s)− (t− s) γ ′i (t)
∣∣ ≤ |t− s| ∣∣γ ′i (t)− γ ′i (ti)∣∣ ≤ |t− s| ε.

Then applying the triangle inequality repeatedly, we have∣∣γ(t)− γ(s)− (t− s) γ ′(t)
∣∣ ≤ n |t− s| ε.

Now if A ⊂ [0, 1] satisfies ti − ti−1 < δ for all i, then∣∣∣∑∣∣γ(ti)− γ(ti−1)
∣∣−∑ (ti − ti−1)

∣∣γ ′(ti)∣∣∣∣∣ ≤ ne∑ |ti − ti−1| ≤ nε.

Now
∑

(ti − ti−1)
∣∣γ ′(ti)∣∣ is the right Riemann sum for

∫ 1
0

∣∣γ ′(t)∣∣dt, so if we take A ′

with ti − ti−1 < δ ′ < δ, then∣∣∣∣∣∑ (ti − ti−1)
∣∣γ ′(ti)∣∣− ∫ 1

0

∣∣γ ′(t)∣∣dt∣∣∣∣∣ ≤ ε.
Thus we have ∣∣∣∣∣LA ′(γ)−

∫ 1

0

∣∣γ ′(t)∣∣dt∣∣∣∣∣ < (n+ 1) ε

whenever ti − ti−1 < δ ′ for all i.

Given any A, pick A ′ satisfying the condiion above, then

LA(γ) ≤ LA ′(γ) ≤
∫ 1

0

∣∣γ ′(t)∣∣dt+ (n+ 1) ε

and

LA ′(γ) ≥
∫ 1

0

∣∣γ ′(t)∣∣dt− (n+ 1) ε.

Combining these two, we have

L(γ) = sup
A
LA(γ) =

∫ 1

0

∣∣γ ′(t)∣∣ dt.
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1.2 Isometries of Rn

Definition. Let (X, dX) and (Y, dY ) be metric spaces. A bijection φ : X → Y is
an isometry if it preserves distances; that is,

dX(X1, X2) = dY (φ(X1), φ(X2))

for all X1, X2 ∈ X.

An isometry is continuous: given ε > 0, dY (φ(X1), φ(X2)) < ε whenever dX(X1, X2) < ε.

Lemma 1.6. The inverse of an isometry is an isometry. The composition of two isome-
tries is an isometry.

Proof. Suppose φ : X → Y is an isometry with φ(Xi) = Yi. Then dY (Y1, Y2) =
dX(X1, X2), and so dY (Y1, Y2) = dX(φ−1(Y1), φ−1(Y2)), which shows that φ−1 is an
isometry.

If ψ : Y → Z is an isometry, then

dZ(ψ(φ(X1)), ψ(φ(X2)) = dY (φ(X1), φ(X2)) = dX(X1, X2),

and so ψ ◦ φ is an isometry.

Corollary 1.7. Let Isom(X) be the set of isometries:

Isom(X) =
{
φ : X → X | φ is an isometry

}
.

Then Isom(X) is a group under composition.

Lecture 3
Examples 1.8.

(i) Translations. If v ∈ Rn, define Tv : Rn → Rn by Tv(x) = x+ v. Then∣∣Tv(x)− Tv(y)
∣∣ = |x+ v − y − v| = |x− y| .

It is clear that Tv is bijective by T−1
v = T−v, and hence Tv is an isometry.

(ii) Orthogonal transformations. Recall that a linear map O : Rn → Rn is or-
thogonal if

O(v) ·O(w) = v · w

for all v, w ∈ Rn. (Or in matrix form, OOT = I.) The set of all such
transformations is the orthogonal group, O(n). If O ∈ O(n), then

Ov ·Ov = v · v =⇒ |Ov| = |v| .

Then using the fact that O ∈ O(n) is a linear map:

|Ox−Oy| =
∣∣O (x− y)

∣∣ = |x− y| ,

and so O is an isometry.

Consider the case n = 2. O ∈ O(2) looks like(
cos θ − sin θ
sin θ cos θ

)
,

rotation by an angle θ around the origin.
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e1

e2

O(e1) = (cos θ, sin θ)

= (cos(θ + π
2 ), sin(θ + π

2 ))

O(e2) = (− sin θ, cos θ)

θ

or like (
cos θ sin θ
sin θ − cos θ

)
,

reflection in the line that makes angle θ/2 with the x-axis.

Proof.(
cos θ sin θ
sin θ − cos θ

)
=

(
cos θ/2 − sin θ/2
sin θ/2 cos θ/2

)
rotate by θ/2

(
1 0
0 −1

)
reflect across

x-axis

(
cos θ/2 sin θ/2
− sin θ/2 cos θ/2

)
rotate by −θ/2

.

How do we tell these two apart? We note that rotations have determinant
+1, whereas reflections have determinant −1.

(iii) Rotation by angle θ about some p ∈ Rn. Here we translate p ∈ Rn to the
origin, perform our rotation, then undo the translation. That is, we have the
composition φ = Tp ◦Oθ ◦ T−p, or

φ(x) = p+O (x− p) = Ox+ (p− θp) .

It turns out that these examples are all we need to generate the orthogonal group, which
is summarised by the following theorem:

Theorem 1.9

Every φ ∈ Isom(Rn) can be written as φ = Tv ◦O for some v ∈ Rn and O ∈ O(n);
that is, φ(x) = O(x) + v.

We will prove this theorem through a series of lemmas.

Lemma 1.10. If φ ∈ Isom(Rn) satisfies φ(0) = 0 and φ(ei) = ei, where {ei} is the
standard basis, then φ = idRn.

Proof. Let φ(x) = y. Then

|x− 0|2 = |φ(x)− φ(0)|2 = |φ(x)− 0|2 = |y|2,

and so we have ∑n
i=1 x

2
i =

∑n
i=1 y

2
i . (∗)

Similarly, for any basis vector ei, we have

|x− ei|2 =
∣∣φ(x)− φ(ei)

∣∣2 = |y − ei|2 .

Hence we have

x2
1 + x2

2 + · · ·+ (xi − 1)2 + · · ·+ x2
n = y2

1 + y2
2 + · · ·+ (yi − 1)2 + · · ·+ y2

n. (∗∗)

Subtracting (∗) from (∗∗) gives −2xi + 1 = −2yi + 1 =⇒ xi = yi. Hence y = x, and
φ = idRn .
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Lemma 1.11. If φ ∈ Isom(Rn) satisfies φ(0) = 0, then φ(x) · φ(y) = x · y for all
x, y ∈ Rn.

Proof. First we have ∣∣φ(x)
∣∣2 =

∣∣φ(x)− φ(0)
∣∣2 = |x− 0|2 = |x|2 . (∗)

We also have ∣∣φ(x)− φ(y)
∣∣2 = |x− y|2 .

This is also equal to∣∣φ(x)
∣∣2 − 2φ(x) · φ(y) +

∣∣φ(y)
∣∣2 = |x|2 − 2x · y + |y|2 .

Finally, using (∗), we get φ(x) · φ(y) = x · y.

Lemma 1.12. If φ ∈ Isom(Rn) with φ(0) = 0, then φ(x) = Ox for some O ∈ O(n).

Proof. Let vi = φ(ei). Then vi · vj = φ(ei) · φ(ej) = ei · ej = δij (lemma 1.11).

Thus O = (v1, . . . , vn) ∈ O(n), with O(ei) = vi.

Then O−1 ◦ φ ∈ Isom(Rn), and by lemma 1.10,

O−1 ◦ φ(ei) = ei

O−1 ◦ φ(0) = 0

}
=⇒ O−1 ◦ φ = idRn

and so we have φ = O.

Proof of theorem. Let v = φ(0). Then by lemma 1.12,

T−1
v ◦ φ(0) = 0, T−1

v ◦ φ(x) = Ox.

Thus φ(x) = Ox+ v.

Corollary 1.13. Isometries preserve angles. That is, if φ ∈ Isom(Rn), and R1, R2 are
rays starting at x, then ∠φ(R1), φ(R2) = ∠R1, R2.

Proof. It suffices to check for φ = Tv and φ = O. If Ri has direction vector vi, then

Tv(Ri) = Tv

({
x+ tvi | t ≥ 0

})
=
{
vi + x+ tvi | t ≥ 0

}
which has direction vector vi also and so the angle is unchanged.

Similarly ORi has direction vector Ovi, and we know that

Ov1 ·Ov2 = v1 · v2,

and so the angle is unchanged.



10 | IB Geometry

Definition. An orthogonal frame at x is an n-tuple of perpendicular rays, denoted
(R1, . . . , Rn), starting at X.

The standard frame is F0 = (X1, . . . , Xn), where Xi is the positive xi-axis.

Corollary 1.14. If F1 and F2 are orthogonal frames, then there is a unique φ ∈
Isom(Rn) with φ(F1) = F2.

Proof. Let vji be the direction vector for Ri. Then

O =

(
vj1
‖vj1‖

, . . . ,
vjn

‖vjn‖

)
∈ O(n).

Let φj = Txj ◦Oj and Fj = (Rj1, . . . , R
j
n).

Then φj(F0) = Fj , and so φ = φ2 ◦ φ−1 has

φ(F1) = φ2(φ−1
1 (F1)) = φ2(F0) = F2.

That proves existence, now for uniqueness: if φ ′(F1) = F2, then

φ−1
2 ◦ φ

′ ◦ φ1(F0) = φ−1
2 (φ(F1)) = φ−1

2 (F2) = F0,

and φ−1
2 ◦ φ ′ ◦ φ1 = idRn by lemma 1.10. Thus φ ′ = φ2 ◦ φ−1

1 = φ.

1.3 The Euclidean plane

Lecture 4
Proposition 1.15. Two distinct lines in R2 intersect in at most one point.

Proof. The intersections are solutions of

x+ tv1 = y + sv2.

Rearranging this, we have
tv1 − sv2 = y − x.

If v1 and v2 are linearly independent, then there is a unique solution. If they are linearly
dependent:

• either y − x is in the span of v1, and the lines are the same;

• or y − x is not in the span of v1, and there are no solutions.

Definition. Two distinct lines in R2 are parallel if they do not intersect.

Corollary 1.16. If L is a line, and p is a point not on L, then there is a unique line
L ′, that passes through p and is parallel to L.

Proof. The calculation above shows that the direction vector of L ′ is a scalar multiple
of the direction vector of L.

We saw before that there’s a unique line passing through p with a given diection (up to
scalar multiple).
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Definition. The circle of radius r, centred at x is given by{
y : d(x, y) = r

}
.

Proposition 1.17. A line and a circle intersect in at most two points.

Proof. Suppose the circle is centred at p.

We need to solve the two equations:

ax1 + bx2 + c = 0, (line)

(x1 − p1)2 + (x2 − p2)2 = r2. (circle)

We can solve for x1 in terms of x2 (or vice versa, if a = 0). Substitute to get a quadratic
equation for x2, and so there are at most two solutions.
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2 Spherical geometry

2.1 Basics

Definition. The sphere S 2 is{
(x, y, z) ⊆ R3 : x2 + y2 + z2 = 1

}
.

The tangent space to S 2 at p ∈ S 2 is

TpS
2 = p⊥ ⊆ R3,

which is a vector space.

The name tangent space is natural, because tangents to paths on the sphere naturally
lie in this space:

Proposition 2.1. If γ : [0, 1]→ S 2 has γ(t0) = p, then γ ′(t0) ∈ TpS 2

Proof. We have γ(t0) · γ(t0) = 1, so differentiating gives 2 γ ′(t0) · γ(t0) = 0. Thus
γ ′(t0) ⊥ γ(t0).

Definition. Points x,−x ∈ S 2 are called antipodal. Antipodal points are diamet-
rically opposite on the sphere.

We now consider some of the structures that we’re used to in Euclidean geometry, and
how they apply to the sphere. Lines are slightly different to those in R3:

Definition. A line L ⊆ S 2 is H∩S 2, where H is a two-dimensional linear subspace
(a plane) in R3 that passes through the origin.

Some properties of lines on the sphere carry over nicely from Euclidean space. For
example, the fact that (almost) any two points define a unique line:

Proposition 2.2. There is a unique line through any two distinct, non antipodal points.

Proof. There’s a unique plane in R3 containing any two linearly independent vectors.
This generates our unique line.

We require that the two points not be antipodal, because otherwise we can define a
family on lines of S 2, all from the family of planes in R3 that contain the line segment
which joins them.

A concept that doesn’t carry over from Euclidean geometry is that of parallel lines. In
spherical geometry, these don’t exist:

Proposition 2.3. Any two distinct lines intersect in two antipodal points.

Proof. Any two distinct planes in R3 intersect in a one-dimensional linear subspace 〈v〉,
which intersects S 2 in v/‖v‖, −v/‖v‖.

We can also think of spherical lines as circles in Euclidean space, centred at the origin,
which have radius 1.
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Now we consider direction vectors on the sphere.

Proposition 2.4. There exists a bijection

{lines L passing through p} ←→
{
v ∈ TpS 2 : v 6= 0

}
/v ∼ λv, λ ∈ R.

Proof. We construct our bijection as follows:

L = H ∩ S 2 −→ p⊥ ∩H = 〈v〉 ,
〈v, p〉 ←− v.

This is a two-dimensional space, since v ∈ p⊥.

Our concepts of rays and line segments carry over nicely from Euclidean space:

Definition. The ray at x = (L, v) is one such that that L is a line through x,
with direction vector v for L at x with ‖v‖ = 1.

The line segment from p to q is the shorter arc of the line joining p and q.

There is no unique line segment from p to q if p and q are antipodal.

Similarly, if we think of angles as arising from our definition of scalar product, then our
definition is the obvious one:

Definition. If (L1, v1) and (L2, v2) are rays at x, then their angle is the Euclidean
angle

∠v1, v2 = cos−1

(
v1 · v2

‖v1‖‖v2‖

)
.

Finally, we come to our notion of distance. We define it in the obvious way:

Definition. If p, q are non antipodal points on S 2, then the distance between
them is given by

d(p, q) = length of line segment from p to q = θ,

where θ = ∠p, q = cos−1(p · q).

If p and q are antipodal; that is, if q = −p, the d(p, q) = θ.

Now we need to show that this definition of distance turns the sphere into a metric
space, because then a lot of nice properties follow easily.

We need to check the three conditions for a metric:

(i) d(p, q) = 0 ⇐⇒ p = q (easy);

(ii) d(p, q) = d(q, p) (easy);

(iii) The triangle inequality: d(p, q) + d(q, r) ≥ d(p, r).

As is usually the case, checking the triangle inequality will be the hardest of the three.
The best way to check this is to do some spherical trigonometry.
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2.2 Spherical trigonometry

First we will need the following lemma:

Lemma 2.5. If a, b, c ∈ R3, then

(i) (a× c) · (b× c) = (c · c) (a · b)− (a · c) (b · c);
(ii) (a× c)× (b× c) =

(
(a× b) · c

)
c.

Proof. We can prove this in generality using suffix notation and the summation conven-
tion. Recall from Vectors & Matrices that

(a× b)i = εijkajbk and εijkεilm = δjlδkm − δjmδkl.

With those in hand, we just expand the expressions accordingly:

(i) (a× c) · (b× c) = (a× c)i (b× c)i
= εijkajckεilmblcm

=
(
δjlδkm − δjmδkl

)
ajckblcm

= ajckbjck − ajckbkcj
= (c · c) (a · b)− (a · c) (b · c) .

(ii)
[
(a× c)× (b× c)

]
i

= εijk (a× c)j (b× c)k
= εijkεjlmalcmεkpqbpcq

= εkpq (δklδim − δkmδil) alcmbpcq
= εkpqakcibpcq − εkpqaickbpcq
= (a× b)q cqci − (c× c)p bpai
=
[
(a× b) · c

]
ci.

This proves the lemma, and gives us a lot of the machinery that we need to do spherical
geometry.

Lecture 5
To use this lemma properly, we need to make sure we know what scalar and vector
products mean in S 2. The scalar product is the same as in R3, and the vector (or cross)
product is only slightly different:

Definition. Let L ⊂ S 2∩H be a ray passing through x with unit direction vector
t, with x perpendicular to t. If x, t ∈ H, then the cross product x × t is the unit
vector perpendicular to H.

Now if we have two rays through x with directions t1, t2, then we have already defined
the angle θ between them to satisfy

cos θ = t1 · t2.

Now let ni = x× ti be the unit normal to Hi. Then

n1 · n2 = (x× t1) · (x× t2)

= (−1)2 [(t1 · t2) (x · x)− (t1 · x) (t2 · x)
]

(by (i) in the lemma)

= (t1 · t2) 1− 0 = t1 · t2.

Hence n1 · n2 = cos θ.

This makes some sort of intuitive sense. If we consider the plane on the page, TxS
2,

then the unit normals are just rotations by π/2. Then clearly the angle θ is preserved.
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Next we need to consider what triangles mean on a sphere.

Now suppose we have a spherical triangle with vertices A,B,C ∈ S 2, with no two
antipodal, sides of length a, b, c, and angles α, β, γ.

Since drawing spherical triangles in three dimensions is often difficult without losing
clarity, we often use two-dimensional representations of the form below. This captures
much of the information about the triangle, but it significantly easier to draw and
understand. The curved arcs represent the spherical lines that define the triangle.

C

γ
a

A

β

b

B

α

c

In particular, it’s worth noting that α+β+ γ > π, as opposed to triangles in Euclidean
space. We will explore the properties of angles of a spherical triangle in more detail
later.

Since the sides are given by arcs on a unit sphere, their lengths are just the angles that
they span. Thus:

cos a = B · C, cos b = A · C, cos c = A ·B.

Note that when we say a, b and c here, we really do mean the lengths, not the angles,
since these lengths are actually angles.

Now, if t is the direction vector for the line segment pointing from A to B, then

A×B = sin c nc = sin c (A× t) ,

where nc is the unit normal to 〈A,B〉.
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Proposition 2.6. Suppose we have a triangle on S 2 as described above. Then we have
the following two rules, which are very similar to rules for triangles in Rn.

(i) Cosine rule:
cos a = cos b cos c+ sin b sin c cosα.

(ii) Sine rule:
sinα

sin a
=

sinβ

sin b
=

sin γ

sin c
.

Proof. These follow very nicely from the machinery we derived in lemma 2.5. Consider:

(A×B) · (A× C) = sin c sin b cosα

= (B · C) (A ·A)− (A ·B) (A · C)

= (cos a) · 1− cos b cos c.

Rearranging these gives the cosine rule.

Now consider

(A×B)× (A× C) = sin c sin b (nc × nb)
= sin c sin b sinαA.

=
(
(A×B) · C

)
A

⇒ (A×B) · C = sin c sin b sinα.

Now we know that this triple product is invariant under cyclic permutations, and so

(A×B) · C = (C ×A) ·B
sin c sin b sinα = sin b sin a sin γ.

This second relation gives us
sin γ

sin c
=

sinα

sin b
,

and the rest of the rule follows by symmetry.

Note. Suppose you’re standing on the surface of the Earth. Technically, the Earth is
approximately a sphere, but standing on its surface, the distances involved are so small
that you might expect to be able to do plane geometry, and this turns out to be roughly
right. We have a, b, c� 1. sin a ≈ a and cos a ≈ 1− a2/2.

The sine rule on spheres obviously reduces to the sine rule in the Euclidean plane. The
cosine rule becomes

(1− a2/2) ≈ (1− b2/2)(1− c2/2) + bc cosα,

which can be rearranged to give

a2 = b2 + c2 − 2bc cosα,

which is the cosine law in the plane.
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2.3 Distance (again)

Finally, we can return to where we started: trying to prove that our notion of distance
defined a metric on the sphere, which required us to prove the triangle inequality. With
a better understanding of spherical trigonometry, we can proceed.

Corollary 2.7 (Triangle inequality). For points A,B,C ∈ S 2 and the distance function
d(·, ·) as defined in section 2.1, we have

d(B,A) + d(A,C) ≥ d(B,C),

with equality if and only if A lies on the line segment BC or B and C are antipodal.

Proof. Using the notation established in the previous section, we want to show that
c+ b ≥ a. We know that

cosα = cos b cos c+ sin b sin c cosα

≥ cos b cos c− sin b sin c = cos(b+ c).

Since cos is decreasing on [0, π], we have a ≤ b+ c.

So now we have two metrics: the Euclidean metric dE on R3, and the spherical metric
dS on S 2. It’s natural to ask the following question:

If γ : [0, 1]→ S 2 ⊂ R3 is a path, and we define

LE(γ) = length of γ with respect to the Euclidean metric on R3

LS(γ) = length of γ with respect to the spherical metric

Are these two distances the same? It turns out that they are, which justifies our choice
of spherical metric.

Proposition 2.8. LE(γ) = LS(γ).

Proof. Let p and q be two points on S 2, with an angle of 2θ between their position
vectors

p q
• •

•

θ

Simple plane geometry tells us that dS(p, q) = 2θ and dE(p, q) = 2 sin θ. Consider

lim
θ→0

dS(p, q)

dE(p, q)
= lim

θ→0

θ

sin θ
= 1.

Given ε > 0, there is some δ1 > 0 such that if dE(p, q) < δ1,

dE(p, q) ≤ dS(p, q) ≤ (1 + ε) dE(p, q). (∗)
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Since γ is uniformly continuous, there is some δ2 > 0 such that

dE(γ(t), γ(s)) < δ1 whenever |t− s| < δ2.

Now we consider the set of dissections

Dδ =
{
A = {0 = t0 < t1 < . . . < tn = 1} | ti − ti−1 < δ ∀i

}
and this means we can write

L(γ) = sup
A
LA(γ) = sup

A

{
LA(γ) | A ∈ Dδ

}
.

Then (∗) implies that if A ∈ Dδ2 , then

LEA(γ) ≤ LSA(γ) ≤ (1 + ε)LEA(γ).

Finally, for all ε > 0, we have

LE(γ) ≤ LS(γ) ≤ (1 + ε)LE(γ),

and so LE(γ) = LS(γ).

This is extremely useful, because it means we can use whichever metric is more conve-
nient.

2.4 Isometries

Now we consider the isometries of the sphere. This will turn out to be easier than when
we were working in Rn. Let’s start by considering orthogonal matrices:

Example 2.9. Suppose O ∈ O(3). If A,B ∈ S 2, then

d(A,B) = cos−1(A ·B) = cos−1(OA ·OB) = d(OA,OB),

and so O ∈ Isom(S 2).

It turns out that these actually define all the isometries of the sphere:

Theorem 2.10

Isom(S 2) = O(3).

Remember how we showed this in the Euclidean case. We proved it with a series of
lemmas. First we showed that if an isometry fixes the origin and the standard basis,
then it is the identity. Again:

Lemma 2.11. If φ ∈ Isom(S 2), φ(ei) = ei for i = 1, 2, 3, then φ = idS 2.

Proof. Let x = (x1, x2, x3), and φ(x) = y = (y1, y2, y3). Then

xi = x · ei = cos d(x, ei) = cos d(φ(x), φ(ei)) = cos(d(y, ei)) = y · ei = yi.

Thus xi = yi for i = 1, 2, 3, and hence x = φ(x).
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Notice that this was easier than the Euclidean case. Since we don’t have translations
on S 2, that’s all we need to prove the theorem:

Proof of theorem. If φ ∈ Isom(S 2), then let vi = φ(ei). Then

vi · vj = cos d(vi, vj) = cos d(ei, ej) = ei · ej = δij .

Thus we can construct a matrix O = (v1, v2, v3) ∈ O(3). Thus O ∈ Isom(S 2), with
O(ei) = vi.

Now O−1 ◦ φ ∈ Isom(S 2), with (O−1 ◦ φ)(ei) = O−1(vi) = ei, and so O−1 ◦ φ = idS 2 by
the lemma. Hence φ = O.

Lecture 6
Now we know what the isometries of S 2 are, let’s consider how their properties relate
to those in Euclidean space. Suppose L = S 2∩H is a line through x with unit direction
t ∈ TxS 2.

If O ∈ O(3), then OL = S 2 ∩ OH is a line through Ox with unit direction Ot, since
Ot ∈ OH and Ot ·Ox = t · x = 0. Thus Ot ∈ TOxS 2.

From this observation we draw the immediate corollary:

Corollary 2.12. Isometries of S 2 preserve angles.

Proof. If R1, R2 are rays at x with direction vectors t1, t2, then OR1, OR2 have direction
vectors Ot1, Ot2, and

cos∠R1, R2 = t1 · t2 = Ot1 ·Ot2 = cos∠OR1, OR2,

since O ∈ O(3). Thus angles are preserved.

Another concept we can bring over from our work in R2 is that of orthogonal frames:

Definition. An orthogonal frame at x ∈ S 2 is an ordered pair of unit tangent
vectors (t1, t2) with ti ∈ TxS 2 and t1 ⊥ t2.

The standard frame F0 at (0, 0, 1) is (e1, e2).

Our results from the Euclidean plane carry over naturally:

Corollary 2.13. If F1 = (t11, t
1
2) is an orthogonal frame at x1, and F2 = (t21, t

2
2) is an

orthogonal frame at x2, then there is a unique O ∈ Isom(S 2) with O(F1) = F2.

Proof. Observe that x1, t1, t2 is an orthonormal basis for R3, so we construct O1 =
(x1, t1, t2) ∈ O(3).

Then O1(F0) = F1. Define O2 similarly. Then (O2 ◦O−1
1 )(F1) = O2(F0) = F2.

Uniqueness is immediate, since an element of O(3) is determined by its action on the
basis x1, t1, t2.
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2.5 Angle defect

Now we come to the first beautiful theorem of the course, involving the previously
discussed angle formula for triangles.

Definition. If 4ABC is a spherical triangle with angles α, β, γ, then the angle
defect of ABC is defined as

δ(ABC) = α+ β + γ − π.

Theorem 2.14

For a triangle as described above,

δ(ABC) = Area(4ABC).

Proof. First let’s consider two lines on the sphere. A pair of lines divide S 2 into four
spherical sectors, and without loss of generality, suppose they intersect at the poles.
(Compare them to slices of an orange.) Looking downward:

Θ

Let SΘ be the sector subtended by angle Θ. Now Area(S 2) = 4π, so Area(SΘ) = 2Θ,
either by considering it as a proportion of the surface area of the whole sphere, or by
considering the area integral

Area(SΘ) =

∫ Θ

θ=0

∫ π/2

φ=−π/2
sinφ dθ dφ.

A third line divides S 2 into an “octahedron” (strictly speaking, the projection of an
octahedron onto a sphere).

Consider the triangle 4ABC. This allows us to divide S 2 into two regions, R and −R,
where R is 4ABC and the three faces adjacent to ABC. We note that −R is the image
of R under x 7→ −x, so Area(R) = Area(−R). Thus Area(R) = 2π.

We label the triangles as follows (letting 41 = 4ABC):
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C

γ

A

β

B

α

42 43

44

Now we notice that pairs of triangles form spherical sectors:

1 ∪ 4 = spherical sector with ∠γ,

1 ∪ 3 = spherical sector with ∠α,

1 ∪ 2 = spherical sector with ∠β.

Then using the previously discussed formula for the area of a spherical sector, we have

Area(1 ∪ 4) = 2γ,

Area(1 ∪ 3) = 2α,

Area(1 ∪ 2) = 2β.

We’ve already seen that Area(R) = 2π, and R = 1 ∪ 2 ∪ 3 ∪ 4. Thus

2π = Area(1 ∪ 2 ∪ 3 ∪ 4) = 2γ + 2α+ 2β − 2 Area(1).

But Area(1) = Area(4ABC), and so rearranging just gives

Area(4ABC) = α+ β + γ − π = δ(ABC).

Now let’s look at an application of this.

Definition. A spherical polyhedron P is

(i) A set of points (vertices) in S 2;

(ii) A set of line segments (edges) in S 2 which are disjoint except at vertices;

(iii) Faces of P , the connected components S 2 − {edges}.
(iv) Every vertex lies on an edge.

Theorem 2.15: Euler’s formula

If P is a spherical polyhedron with V vertices, E edges and F faces, then

V − E + F = 2.

Proof. Suppose some face has more than three sides. Then we can subdivide the face
to make a new P ′ with V ′ = V vertices, E ′ = E + 1 edges and F ′ = F + 1 faces. Thus
V ′ − E ′ + F ′ = V − E + F .
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Thus, it is sufficient to prove Euler’s formula for the subdivided shape. After repeated
subdividing, we can assume that all faces are triangles.

Every triangle has three edges, and every edge borders two faces. Thus

3F = 2E or E = 3
2F. (∗)

Now consider the sum of the angles:

S = sum of every angle in every face of P

= sum of every angle at every vertex of P .

Working from the face-based definition, we have:

S =
∑

faces f

∑
angles θi

in f

=
∑

faces f

[
π + Area(f)

]
= πF + Area(S 2) = πF + 4π.

Alternatively, using the vertex definition, we have

S =
∑

vertices vi

∑
angles θi

at v

=
∑
v

2π = 2πV

Combining these, we have

2πV = πF + 4π =⇒ F = 2V − 4. (∗∗)

Combining equations (∗) and (∗∗), we have

V − E + F = V − 1
2F = V − 1

2 (2V − 4) = 2.

Now let’s recast this in a form we might be slightly more familiar with:

Definition. A convex Euclidean polyhedron is a convex bounded subset of R3

bounded by a finite number of planes. That is,

P =

n⋂
i=1

Xi,

where Xi =
{
x ∈ R3 : x · vi ≤ ci

}
.

Corollary 2.16. If P is a convex Euclidean polyhedrom with V vertices, E edges and
F faces, then V − E + F = 2.
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Proof. After translation, we can assume that the origin is inside P . Then consider the
map which projects P on to the surface of the sphere.

π : R3 −O −→ S 2

v 7−→ v/‖v‖

The image of P is a spherical polyhedron P ′ with V vertices, E edges and F faces.

Note that an edge of P ′ is a Euclidean line segment. It projects to the spherical line
segment lying on H, where H is the plane spanned by O on L.
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2.6 Topology of surfaces

Lecture 7
Definition. A surface is a metric space S which is locally homeomorphic to R2;
that is, for every x ∈ S, there’s an open U 3 x and a homeomorphism

φU : U → B0(1) =
{
x ∈ R2 : |x| < 1

}
.

Notice that there’s nothing special about 2 in this definition. If we replace 2 by n, then
we recover the definition of an n-dimensional manifold. We will study these objects
further in Part II.

Examples 2.17.

(i) Trivially, R2.

(ii) The sphere S 2. Given x ∈ S 2, take Ux to be the open hemisphere which
contains x. Let φUx be the projection on to the plane which cuts out the
hemisphere.

Ux
•

•x

In the diagram above, we consider a cross-section of the sphere. The hemi-
sphere containing x is shaded, and we project onto the dashed line (the plane
which removes Ux from S 2). We will see a form of this later, when we discuss
stereographic projections.

(iii) The cylinder S 1 × R = (R/Z)× R = R2/Z, where Z ∼=
〈
(1, 0)

〉
⊂ R2.

0 1

The diagram above shows that the cylinder can also be thought of as [0, 1]×R.
We take a pair of infinite lines at 0 and 1 (left), and we wrap them around
until they meet, and this is the infinite cylinder (right). The interval [0, 1] is
mapped to a circle, which we recover by taking a cross-section of the cylinder.
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(iv) Mbius band, M = [0, 1]× [−1/1]/ ∼, where (0, y) ∼ (1,−y).

(−1, 0)

(−1, 1)

(1, 0)

(1, 1)

Traditionally we make a Mbius band by taking a strip of paper, twisting
one end and glueing the ends together. Geometrically, we take the rectangle
[0, 1] × [−1/1] with a specified orientation, and we join the ends together in
such a way that preserves orientation.

In the diagram above, we have included several arrows to better illustrate how
orientation is preserved.

The TikZ code for the shaded Mbius strip was written by Jacques Duma and
Gerard Tisseau, published online at http://math.et.info.free.fr/TikZ/index.html.

(v) The torus T 2 = S 1 × S 1 = (R/Z)× (R/Z) = R2/Z2.

Constructing a torus from elementary geometry is slightly, but not signifi-
cantly, more difficult than anything we’ve done so far. First consider the
rectangle [0, 1]2, with a clockwise orientation:

(0, 0)

(0, 1)

(1, 0)

(1, 1)

We wrap this around to construct a cylinder, not unlike example (iii). How-
ever, this is finite in both dimensions. Notice that the orientation in the two
circular faces go in the opposite directions.

Then we wrap the two ends of the cylinder around to make a torus, or a
doughnut shape.

There’s nothing special about the 2 in the definitions of S 2 and T 2. Both
constructions are dimension independent; we can just as easily, for example,
define T 7 embedded in R7.

http://math.et.info.free.fr/TikZ/index.html
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2.7 Building surfaces

Definition. Let S1 and S2 be surfaces, and φi : Ui → B0(1), where Ui ⊂ Si.

Then we define the connected sum of S1 and S2, denoted S1#S2, to be

S1#S2 =
[
S1 − φ−1

1 (B0(1
2))
]
∪
[
S2 − φ−1

2 (B0(1
2))
]
/ ∼,

where φ−1
1 (1

2z) ∼ φ
−1
2 (1

2z) for z ∈ S 1.

For example, we can connect two copies of T 2 in this way to construct a two-holed torus,
which is a surface of genus 2. Indeed, in general, a surface of genus g is the connected
sum of g copies of T 2.

Fact. Every compact surface is one of

(i) S 2;

(ii) #gT 2 (a genus g surface);

(iii) #nRP 2.

We will study this further in Part II Algebraic Geometry.

This obviously doesn’t work in higher dimensions. For example, there are infinitely
many three-manifolds that are not decomposable as connected sums.

Now let’s look at another way of building surfaces.

Definition. A triangulated surface is obtained by starting with a disjoint union
of closed triangles and identifying pairs of edges. Each triangle will be embedded
with an orientation, and we join them in such a way as to preserve orientation.

4

2
1

4

5

3

5

6
3

6

1
2

The result is a compact surface. (This means that is is bounded bounded and
closed.)

If S is a triangulated surface with V vertices, E edges and F faces, then

χ(S) = V − E + F

is the Euler characteristic of S.

Let’s consider how we might go about computing this Euler characteristic. Counting
the number of faces and edges is easily found from the number of triangles which we
start with, but counting the number of vertices is more difficult.

Let’s consider the Euler characteristic of a connected sum. If S1, S2 are triangulated
surfaces, then we can make a triangulated surface homeomorphic to S1#S2 by removing
one face from each of S1 and S2, and identifying edges of those faces. Thus

F# = F1 + F2 − 2, E# = E1 + E2 − 3, V# = V1 + V2 − 3.



28 | IB Geometry

Substituting into the definition of Euler characteristic, we have

χ(S1#S2) = χ(S1) + χ(S2)− 2,

which gives us a good way to compute the Euler characteristic for complicated surfaces.
If we can represent it as the connected sum of simpler surfaces of which we already know
the Euler characteristic, then we can compute its Euler characteristic using the formula
above.

If S1 and S2 are homeomorphic to one another, and in turn homeomorphic to S 2, then
χ(S1) = χ(S2), and so the Euler characteristic is a topological invariant. The basic idea
is to construct triangulated surfaces on S 2 that are homeomorphic to S1 and S2, then
apply the formula we already know for convex spherical polyhedra to them.

Example 2.18. If we take a triangulation of a torus T 2, then it has Euler char-
acteristic 0 (unproved). Thus the connected sum of g tori, a surface of genus g,
has

χ(#gT 2) = 0− 2 (g − 1) = 2− 2g.

Finally, this example should make us wonder whether the Euler characteristic is well-
defined for general surfaces, and not just triangulated ones. This turns out to be the
case, although we won’t prove it here; instead, see Algebraic Topology.
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3 Mbius transformations

3.1 Stereographic projection

Lecture 8
We’ve encountered Mbius transformations before, in Groups. These are transformations
of the extended complex plane, C ∪ {∞} = C∞. We’d like to consider how they apply
to the sphere, S 2. To do this, first we need to map the sphere to the complex plane,
which we do using stereographic projections.

Definition. Let N = (0, 0, 1) ∈ S2 (the “north pole”). Then we define the
stereographic projection map π : S 2\{N} → R2 = C by

π(p) = intersection of the Euclidean ray p−N with the x, y plane.

Let’s consider a slightly flattened picture of this: if p = (x, 0, z):

z

x

N

•
π(p)

•

•
p = (x, 0, z)

This picture gives us a way to compute the value of π(p) for a given point p. By
considering the two similar triangles, we see that

z

1
=
π(p)− x
π(p)

=⇒ π(p) =
x

1− z
,

and so the x-coordinate of π(p) is x/(1− z).

The projection is radially symmetric about the z-axis, and so by rotating, we have

π
(
(x, y, z)

)
=
x+ iy

1− z
.

So now we naturally ask how to invert the projection. In other words, given w ∈ C, can
we find p ∈ S 2 with π(p) = w. We consider w ∈ C with

w =
x+ iy

1− z
, x2 + y2 + z2 = 1.

Squaring this equation gives

|w|2 =
x2 + y2(
1− z2

)2 =
1− z2

(1− z)2 =
1 + z

1− z
.

We can solve this for z in terms of |w|, which gives

z =
|w|2 − 1

|w|2 + 1
=⇒ 1− z =

2

|w|2 + 1
.
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Now we return to our definition of w. We have

x = (1− z)<(w) and y = (1− z)=(w),

and thus we can write

π−1(w) =

(
2<(w)

1 + |w|2
,

2=(w)

1 + |w|2
,
|w|2 − 1

|w|2 + 1

)
.

This will turn out to be a very useful formula.

This projection map does most of the work of identifying C∞ to S 2. There are just two
points left unaccounted for: ∞ ∈ C∞, and N ∈ S 2. It naturally follows that we can
identify C∞ and S 2 using the map

w ∈ C←→ π−1(w) ∈ S 2,

∞←→ N ∈ S 2.

This tells us that {wn} → ∞ in C∞ if and only if |wn| → ∞ also.

In this context, we call C∞ the Riemann sphere, and we will also encounter it in Complex
Analysis and Complex Methods.

3.2 Mbius group

Consider an invertible matrix

A =

(
a b
c d

)
∈ GL2(C).

This induces a Mbius map. We define

φA : C∞ −→ C∞
w 7−→ aw+b

cw+d

,

with φA(−d/c) =∞ and φA(∞) = a/c.

Lemma 3.1.

(i) φλA(w) = φA(w);

(ii) φA(φB(w)) = φAB(w).

Proof. Part (i) is easy and left as an exercise. For (ii), define

X =
{
w ∈ C2 : w 6= 0

}
/ ∼, w ∼ λw, λ ∈ C∗.

We can define a map P : X → C∞ by P (w1, w2) = w1/w2.

Then GL2(C) acts on X by A · w = Aw (by matrix multiplication) and

P (Aw) = φA(P (w)).

Then we have

φA(φB(P (w))) = P (A · (B · w)) = P (ABw) = φAB(P (w)).

It would have been easy to do this by simply plugging in matrices and turning the handle
on some algebra, but this is a cleaner proof. It gives us some understanding of why the
result is true.
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Corollary 3.2. We define the projective general linear group as

PGL2(C) :=
GL2(C)

{λI : λ ∈ C}
.

This acts on C∞.

Exercise 3.3. If SL2(C) is the special linear group, then show that

PGL2(C) =
SL2(C)

{±I}
=: PSL2(C).

Definition. The Mobius group is given by

Mob =
{
φ : C∞ → C∞ : φ(w) = φA(w), A ∈ GL2(C)

} ∼= PSL2(C).

Then φ ∈ Mob is a Mobius transformation. This is the group of all invertible
holomorphic maps C∞ → C∞.

Lemma 3.4.

(i) We can generate Mob with maps of the form

• z 7→ az, a ∈ C∗ (dilation);

• z 7→ z + b, b ∈ C (translation);

• z 7→ 1/z (inversion).

(ii) If z1, z2, z3 and w1, w2, w3 are two sets of distinct points in C∞, then there is a
unique φ ∈ Mob with φ(zi) = wi.

(iii) Cross ratios. If z1, z2, z3, z4 ∈ C∞ are distinct and φ ∈ Mob with φ(zi) = wi, then
cross ratios are preserved. That is,

(z2 − z3) (z4 − z1)

(z2 − z1) (z4 − z3)
=

(w2 − w3) (w4 − w1)

(w2 − w1) (w4 − w3)
.

Proof is left as an exercise.

Definition. Let C be the set of Euclidean lines and circles in C.

Lemma 3.5. Let S ⊂ C. Then S ∈ C if and only if S satisfies an equation of the form

azz + bz + bz + c = 0,

for a, c ∈ R, b ∈ C, and not all zero.

Proof. A line satifies αx+ βy = γ, for α, β, γ ∈ R, so

α

(
z + z

2

)
+ β

(
z − z

2i

)
= γ.

Rearranging this gives (
α− iβ

2

)
z +

(
α+ iβ

2

)
z = γ,

which is what we want.
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A circle satisfies |z − p|2 = r2, so

zz − pz − pz + |p|2 = r2 or zz − pz − pz +
(
|p|2 − r2

)
= 0,

which is again the desired form.

The converse is very similar: if a 6= 0, then divide by a and complete the square. If
a = 0, then we have a line.

Corollary 3.6. If S ∈ C, φ ∈ Mob, then φ(S) ∈ C. That is, Mbius maps takes lines
and circles to lines and circles.

Proof. It sufficies to check that this is true for the generators of Mob.

Take w = φ(z) = αz. If the equation of S is azz + bz + bz + c = 0, then

z = α−1w =⇒ a

|α|2
ww +

b

α
w +

b

α
w + c = 0.

This equation is of the same form, and so elements of C map to other elements of C.

The cases z 7→ z + b and z 7→ 1/z are similar. For the latter, the new equation is

a

ww
+
b

w
+
b

w
+ c = 0 =⇒ a+ bw + cww = 0,

which is again of the same form.

Corollary 3.7. There’s a unique element of C passing through any three distinct points
z1, z2, z3 ∈ C∞.

Proof. Choose φ ∈ Mob with φ(z1) = 0, φ(z2) = 1 and φ(z3) = 2. There’s a unique line
S ∈ C passing through 0, 1, 2 in R. So C = φ−1(R) is the set that we want.

Corollary 3.8. The group Mob acts transitively on C.

Proof. Given C1, C2, pick z1, z2, z3 on C1, w1, w2, w3 on C2, and φ with φ(zi) = wi.
Then φ(C1) passes though w1, w2, w3, and so φ(C1) = C2.

Examples 3.9.

(i) If φ(z) =
z − i
z + i

, then φ(R) = S 1 ⊂ C.

Consider: if z ∈ R, then |z − i| = |z + i| =
√
z2 + 1.

(ii) The stabiliser of the real line is given by

A =
{
φ ∈ Mob : φ(R) = R

}
=
{
φA : A ∈ GL2(R)

}
.

Similarly, the stabiliser of the circle has

B =
{
φ ∈ Mob : φ(S 1) = S 1

}
=

{
φ : φ(z) = λ

z + α

αz + 1
, λ ∈ S 1, α ∈ C, |α|2 6= 1

}
.

The idea of the proof is that B = φAφ−1, where φ is as in the previous
example.
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4 Riemannian geometry

Lecture 9
All the functions we will encounter in this chapter are smooth (that is, infinitely differ-
entiable) unless otherwise stated.

4.1 Parameterised spaces

Definition. A parametrised surface S ⊂ R3 is a map σ : U → R3, where U is an
open subset of R2 such that

(i) σ is injective and Im(σ) = σ;

(ii) For each p ∈ U , dσ|p is injective.

This condition is actually slightly more restrictive than it needs to be.

If S satisfies (ii), then we say that it is smoothly embedded.

Recall that if σ = (σ1, σ2, σ3), then dσ|p : R2 → R3 has matrix representationσ1x|p σ1y|p
σ2x|p σ2y|p
σ3x|p σ3y|p

 , where σix =
∂σi
∂x

.

Example 4.1. Consider the following two parametrisations of S 2. First, spherical
coordinates:

σ : (0, 2π)× (0, π) −→ R3

(θ, φ) 7−→ (cos θ sinφ, sin θ sinφ, cosφ)
,

Alternatively, consider the inverse of stereographic projection:

σ : R2 −→ R3

(x, y) 7−→
(

2x
1+x2+y2

, 2y
1+x2+y2

, x
2+y2−1

1+x2+y2

)
.

We can construct paths on parametrised surfaces in the obvious way: if γ : [0, 1] → U
is a path in U , then Γ = σ ◦ γ is a path in S.

The chain rule holds as we would expect:

Γ ′(t) = dσ|γ(t) [γ ′(t)].

Definition. The tangent space to S at σ(p) is

Tσ(p)S := Im dσ|p ,

which is a linear subspace of R3.

As with spherical geometry, the derivative of a path at a point is in the tangent space:

Γ ′(t) = dσ|γ(t) [γ ′(t)] ∈ TΓ(t).

This leads to the following fact, which we shall return to later:

|Γ ′(t)|2 = dσ|γ(t) [γ ′(t)] · dσ|γ(t) [γ ′(t)].
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4.2 Riemannian metrics

Definition. If U ⊂ R2 is open, then a Riemannian metric g on U is a smooth map
g : U → Mat2(R) such that for each p ∈ U , gp := g(p) is symmetric and positive
definite. That is,

gp =

(
E(x, y) F (x, y)
F (x, y) G(x, y)

)
with E(x, y) > 0, EG− F 2 > 0.

We saw in Linear Algebra that a symmetric, positive definite matrix is analogous to an
inner product, and that’s what we really care about.

For each p ∈ U , gp defines an inner product on R2

〈a, b〉 = aT
(
E F
F G

)
b =: gp(a, b).

If σ : U → R3 is a parameterised surface, then define g by

gp(a, b) = dσ|p (a) · dσ|p (b),

which is the usual inner product on R3.

Note. If Γ = σ ◦ γ, then

Γ ′(t) · Γ ′(t) = gγ(t)(γ
′(t), γ ′(t)).

Now if we have

A = dσ|p =

σ1x σ1y

σ2x σ2y

σ3x σ3y

 =
(
σx σy

)
,

then we can write
dσ|p (a) · dσ|p (b) = Aa ·Ab = aTATAb.

This gives us

g = ATa =

(
σx
σy

)(
σxσy

)
=

(
σx · σx σx · σy
σy · σx σy · σy

)
.

Now we must show that this really is a metric:

Lemma 4.2. As defined above, g is a Riemannian metric.

Proof. As σx · σy = σy · σx, the matrix is symmetric.

To show that it is positive definite, write

gp(a, a) = dσ|p (a) · dσ|p (a) ≥ 0,

with equality if and only if dσ|p (a) = 0, which is true if and only if a = 0, since dσ is
injective. (This is where our embedding hypothesis comes in.)

Notation. We don’t usually write g as a 2 × 2 matrix; instead we write g = E dx2 +
2F dx dy +G dy2, where

E = σx · σx, F = σx · σy, G = σy · σy.

We say that this g is the Riemannian metric on U induced by σ.

Note that not every Riemannian metric arises in this way.
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Example 4.3. The Euclidean metric on R2 is dx2 + dy2.

The Euclidean metric on R3 is du2
1 + du2

2 + du2
3, for coordinates (u1, u2, u3) on R3.

We write

dui =
∂σi
∂x

dx+
∂σi
∂y

dy,

then the metric induced by σ is du2
1 + du2

2 + du2
3.

Now let’s look at a more complicated example:

Example 4.4. Consider

σ(x, y) =

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
x2 + y2 − 1

1 + x2 + y2

)
, α = 1 + x2 + y2.

Then we have

dσ1 =

(
2

α
− 4x2

α2

)
dx− 4xy

α2
dy = 2

(
1 + y2 − x2

α2
dx− 2xy

α2
dy

)

dσ2 = 2

(
1 + x2 − y2

α2
dy − 2xy

α2
dx

)
dσ3 =

4x

α2
dx+

4y

α2
dy.

So we have

g = (dσ1)2 + (dσ2)2 + (dσ3)2

=
4

α4

[[(
1 + y2 − x2

)2
+ 4x2y2 + 4x2

]
dx2

+ [−2xy − 2xy + 4xy] dx dy

+

[(
1 + x2 − y2

)2
+ 4x2y2 + 4y2

]
dy2

]
=

4

α4

(
α2 dx2 + α2 dy2

)
=

4
(
dx2 + dy2

)(
1 + x2 + y2

)2 .
Notice in particular that this is a function of the standard Euclidean metric.
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4.3 Geometry with the Riemannian metric

Let g be a Riemannian metric on U ⊂ R2.

Definition. A path γ : [0, 1]→ R2 is piecewise smooth if it is continuous on [0, 1]
and smooth except at finitely many points 0 = t0 < t1 < t2 < · · · < tn = 1.

This gives us a way to define length. If γ : [0, 1]→ U is a piecewise smooth curve,
then we define

Lg(γ) =
n−1∑
i=0

∫ ti+1

ti

√
gγ(t)(γ ′(t), γ ′(t)) dt.

Now, if g is induced by σ, and Γ = σ ◦ γ, then

|Γ ′(t)| =
√
gγ(t)(γ ′(t), γ ′(t)),

and so Lg(γ) = L(Γ), the Euclidean length. This feels intuitively correct.

Now we have a notion of length, we can define distance: if p, q ∈ U , then define

d(p, q) = inf
{
Lg(γ) | γ : [0, 1]→ U piecewise smooth, γ(0) = p, γ(1) = q

}
.

Note, however, that the infinum need not be obtained by any γ. Consider:

Example 4.5. Let U = R2\{0}. Take g = dx2 + dy2, and p = (−1, 0), q = (1, 0).

Then the infinum is the straight line between them, but this is disallowed since 0
has been excluded. Thus the infinum is never attained.

Once we have distance, then we can define surface area. If A ⊂ U , then define

Area(A) =

∫∫
A

√
EG− F 2 dx dy =

∫∫
A

√
det g dx dy,

if this integral is defined, and otherwise we say that the area of A is undefined.
Lecture 10

Now we want to show that our notion of distance really is a metric in Riemannian space.

Proposition 4.6. As defined above, d is a metric.

Proof. We must check that:

(i) d(p, q) ≥ 0, with equality if and only if p = q;

(ii) d(p, q) = d(q, p);

(iii) d(p, q) + d(q, r) ≥ d(p, r).

Unlike previous metrics, it turns out that (i) will be the hardest condition to prove. We
need a lemma:

Lemma 4.7. Given p ′ ∈ U and r > 0 so that Br(p
′) ∈ U , there is c > 0 such that if

γ : [0, 1]→ Br(p
′) is a path, then Lg(γ) ≥ c

∣∣γ(0)− γ(1)
∣∣ (Euclidean distance).

Proof of lemma. Consider the general form of gp:

gp =

(
E F
F G

)
.

This is symmetric and positive definite, so it has strictly positive eigenvalues λ1(p), λ2(p)
and eigenvectors v1(p), v2(p) which form an orthonormal basis of R2.
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If v = av1(p) + bv2(p), then

gp(v, v) = a2λ1(p) + b2λ2(p)

≥ min(λ1, λ2) (a2 + b2)

= min(λ1, λ2) v · v. (∗)

Now λ1, λ2 are continuous functions of p and Br(p ′) is compact, so there exists some
q1 ∈ Br(p ′) with λ1(q1) ≤ λ1(r) for all r ∈ Br(p). Similarly, there is some q2 with
λ2(q2) ≤ λ2(r) for all r ∈ Br(p).

So take λ = min(λ1(q1), λ2(q2)), then gp(v, v)λv · v for all p ∈ Br(p) (from (∗)). Then

Lg(γ) =

∫ 1

0

√
gγ(t)(γ ′(t), γ ′(t)) dt

≥
∫ 1

0

√
λγ ′(t) · γ ′(t) dt

=
√
λLEuclidean(γ)

≥
√
λ
∣∣γ(0)− γ(1)

∣∣ .
So we take c =

√
λ.

Proof of proposition.

(i) For any γ, we have Lγ(γ) ≥ 0, so

d(p, q) = inf
γ
Lg(γ) ≥ 0.

Pick r > 0 with Br(p) ⊂ U , and choose c > 0 as in the lemma.

Spose q 6= p. If q ∈ Br(p), γ(0) = p, γ(1) = q, then the lemma tells us that

Lg(γ) ≥ c
∣∣γ(0)− γ(1)

∣∣ = c dEuclidean(p, q)

and so we have

d(p, q) =

∫
γ
Lg(γ) ≥ c dEuclidean(p, q) > 0,

since p 6= q.

If q 6∈ Br(p), then by the intermediate value theorem, if γ(0) = p, γ(1) = q, then
there exists some t ∈ (0, 1) with

∣∣p− γ(t)
∣∣ = r. Then

Lg(γ) ≥ Lg(γ|[0,t]) ≥ c
∣∣p− γ(t)

∣∣ = cr > 0,

so again inf Lg(γ) ≥ cr > 0.

(ii) There’s a bijection between

{paths from p to q} ←→ {paths from q to p}

taking γ(t) 7→ γ(1− t) = γ−1(t); that is, just traversing the paths in the opposite
directions. So we have

Lg(γ) = Lg(γ
−1) =⇒ d(p, q) = d(q, p).
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(iii) We want to show that d(p, q) + d(q, r) ≥ d(p, r). Pick:

• γ1 with γ1(0) = p, γ1(1) = q, and Lg(γ1) ≤ d(p, q) + ε (ε > 0), and;

• γ2 with γ2(0) = q, γ2(1) = r, and Lg(γ2) ≤ d(q, r) + ε.

Define γ by

γ(t) =

{
γ1(2t) if t ≤ 1/2,

γ2(2t− 1) if t > 1/2.

Then γ is piecewise smooth and

Lg(γ) = Lg(γ1) + Lg(γ2) = d(p, q) + d(q, r) + 2ε ≥ d(p, r),

and letting ε→ 0 gives
d(p, q) + d(q, r) ≥ d(p, r).

So now this definitely defines a metric. Now we move to consider angles. If γ1, γ2 :

[0, 1]→ U , with γi(ti) = p, then let vi = γ ′i (ti).

γ1

γ0

•
p

θ

The angle θ between γ1 and γ2 at p is defined to be

cos θ =
gp(v1, v2)

|v1|g |v2|g
, where |vi|g =

√
gp(vi, vi).

If g is induced by σ : U → R3, then θ is the Euclidean angle between Γ1 = σ ◦ γ1 and
Γ2 = σ ◦ γ2 at σ(p).
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4.4 Isometries

Let Ui ⊂ R2. Suppose φ : U1 → U2 is bijective, and that φ, φ−1 are smooth.

If g2 is an Riemannian metric on U2, then there is an induced metric g ′2 on U1, given by

g ′2p(a, b) = g2φ(p)(dφ|p (a),dφ|p (b)).

In terms of matrices, we have

g ′2 = dφT
(
E2 F2

F2 G2

)
dφ,

where

g2 =

(
E2 F2

F2 G2

)
.

Definition. If φ is as above and gi is an Riemannian metric on Ui, we say that φ
is a Riemannian isometry if g1 = g ′2; that is,

g1(a, b) = g2(dφ(a), dφ(b)).

Proposition 4.8. If φ : U1 → U2 is a Riemannian isometry, then

(i) Lg1(γ) = Lg2(φ ◦ γ).

(ii) d1(p, q) = d2(φ(p), φ(q)), where di is the metric induced by gi.

(iii) The angle between γ1 and γ2 at p is the angle between φ ◦ γ1 and φ ◦ γ2 at φ(p).

(iv) If A ⊂ U1, then Area1(A) = Area2(φ(A)).

Proof.

(i) First we have

g2((φ ◦ γ)′, (φ ◦ γ)′) = g2(dφ(γ ′),dφ(γ ′)) = g1(γ ′, γ ′).

Thus we have

Lg2(φ ◦ γ) =

∫ 1

0

√
g2((φ ◦ γ)′, (φ ◦ γ)′) dt =

∫ 1

0

√
g1(γ ′, γ ′) dt = Lg1(γ).

(ii) There’s a bijection

{paths from p to q in U1} ←→
{

paths from φ(p) to φ(q) in U2

}
taking γ 7→ φ ◦ γ. Since Lg1(γ) = Lg2(φ ◦ γ), the infinima are the same.

(iii) Similar to (i).

(iv) In matrix form,

g1 = dφT g2 dφ =⇒ det g1 = (det dφ)2 det g2.

With this in hand, we have

Area1(A) =

∫∫
A

√
det g1 dA

=

∫∫
A
|det dφ|

√
det g2 dA

=

∫∫
φ(A)

√
det g2 dA

= Area2(φ(A)).
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This naturally leads us to consider conformal maps.Lecture 11

Definition. If g1, g2 are Riemannian metrics on U ⊂ R2, then we say that g1 and
g2 are conformal if

g1p = λ(p) g2p,

where λ : U → R+.

Notice that if g1, g2 are conformal, then

g1p(a, b)

|a|g1p |b|g1p
=

λ(p) g2p(a, b)√
λ(p) |a|g2p

√
λ(p) |b|g2p

=
g2p(a, b)

|a|g2p |b|g2p
,

so the angle between a, b is the same under g1 and g2. Conformal maps preserve angles.

Example 4.9. Consider the Euclidean metric gE , and the spherical metric gS .
These are conformal:

gE = dx2 + dy2 and gS =
4 (dx2 + dy2)

(1 + x2 + y2)2 .

There’s more than one definition. If gi is a metric on Ui, and φ : U1 → U2, then we say
that φ is conformal if g ′2 defined by

g ′2(a, b) = g2(dφ(a), dφ(b))

is conformal to g1.

Proposition 4.10. If f : U1 → U2 is holomorphic with f ′(w) 6= 0 for all w ∈ U1, then
it is conformal to the Euclidean metric gE or the spherical metric gS.

Proof. Let z = x+ iy. Then z = x− iy, and we have

dx2 + dy2 = dz dz.

If z = f(w), then

dz =
∂f

∂w
dw = f ′(w) dw,

Similarly, we have
dz = f ′(w) dw = f ′(w) dw.

Combining these two results, we have

dz dz = |f ′(w)|2 dw dw,

and so dz dz is conformal to dw dw = gE .

Corollary 4.11. Mobius transformations are conformal with respect to gE.

Converse. If f : U1 → U2 is conformal, then either

(i) f is orientation preserving, and hence holomorphic, or;

(ii) f is orientiation reversing, and f(z) = g(z), where g is holomorphic.

Idea of proof. Since π is conformal, and isometries are conformal, we see that π ◦A◦π−1

is a conformal map C∞ → C∞. Every orientation preserving conformal map of C∞ is a
Mobius map, which is proved properly in Complex Analysis or Complex Methods.
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5 Hyperbolic geometry

5.1 Hyperboloid model

Definition. We consider the surface S ⊂ R3 given by x2 + y2 − z2 = −1, z < 0.
This hyperboloid sheet gives us another way to think of points. The sketch below
illustrates the sheet: it asymptotically approaches the planes x = y, y = z and
z = x; we take a cross section view.

With this in mind, we give R3 the Minkowski metric

gM = dx2 + dy2 − dz2.

Formally, we’ve taken the surface x2 + y2 + z2 = −1, and replaced z by iz.

At first, these two definitions might seem unnatural, but in some sense, it’s the most nat-
ural thing in the world. Note, however, that the Minkowski metric is not a Riemannian
metric. It is sometimes called the pseudo-Riemannian metric.

As before, we consider the stereographic projection π : S → C. And as before, we have
a “north pole” N = (0, 0, 1), and for any π ∈ S that is not N , we define π(p) to be the
intersection of NP with the xy plane. Thus

π
(
(x, y, z)

)
=
x+ iy

1− z
= w,

the same as the sphere. Inversion is similar; we first consider

|w|2 =
x2 + y2

(1− z)2 =
z2 − 1

(1− z)2 =
z + 1

z − 1
=⇒ z =

|w|2 + 1

|w|2 − 1
.

Now, if z < 0, then |w|2 < 1, and so

Im(π) = D =
{
w ∈ C : |w| < 1

}
.

So using the same process as the sphere, we have

1− z =
2

1− |w|2
,

and so the inverse is given by

π−1(w) =

(
2<(w)

1− |w|2
,

2=(w)

1− |w|2
,
|w|2 + 1

|w|2 − 1

)
.
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5.2 Unit disc model

Let gD be the metric induced on g using gM , that is,

gD = dσ2
1 + dσ2

2 − dσ2
3,

where

σ(x, y) =

(
2x

1− x2 − y2
,

2y

1− x2 − y2
,
1 + x2 + y2

1− x2 − y2

)
.

Note that we’ve now switched to using x and y as coordinates on D, not on R3. This is
essentially the same calculation as for gS

2
, and we obtain

gD =
4
(
dx2 + dy2

)
(1− x2 − y2)2

.

Again, this is conformal to gE .

5.3 Upper half-plane model

This gives us another way to do hyperbolic geometry. Let H = {z ∈ C : =(z) > 0}, the
upper half-plane. Define

φ : C∞ −→ C∞
z 7−→ (z − i)/(z + i)

We saw in section 3 that φ(R ∪ {∞}) = S1, and since φ(i) = 0, we have φ(H) = D.

Definition. Let gH be the Riemannian metric on H induced from gD using φ:

gHp (a, b) = gDφ(p)(dφ|p (a),dφ|p (b))

By definition, φ is a Riemann isometry from gH to gD.

To compute gH , write w = x+ iy. Then dx2 dy2 = dw dw. For w ∈ D, we have

w = φ(z) =
z − i
z + i

= 1− zi

z + i
.

By careful consideration, this gives us

dw =
zi

(z + i)2 and dw =
−zi

(z − i)2 dz.

By substituting appropriately, and writing z = u+ iv, we have

gH =

4

(
zi dz

(z + i)2

)(
−zidz

(z − i)2

)
(

1− (z − i) (z + i)

(z + i) (z − i)

)2 =
16 dz dz[

(z + i) (z − i)− (z − i) (z + i)
]2

=
16 dz dz[
zi (z − z)

]2
=

16 dz dz

(4v)2

=
du2 + dv2

v2
.



Hyperbolic geometry | 43

5.4 Geometry of the hyperbolic plane

Lecture 12
We’ve now seen two models of the hyperbolic plane: the upper half-plane model H, and
the unit disc model D.

In particular, recall that GH = PSL2(R) acts on H, with

GD =

{
φ : φ(z) = eiθ

z − a
az − a

, θ ∈ R, a ∈ D
}

= φGHφ−1.

This φ gives us a way to compare boundaries: ∂H = R∪∞ = R∞, and ∂D = S 1. Then
φ(R∞) = S 1.

We may use both of these models, depending on which is more convenient at the time.
We use H to denote either one, without specifying which. With these two models in
hand, we can discuss all the features of geometry that we’ve talked about before.

Angles are simple. Both gD and gH are conformal, so angles between curves in gD or
gH is the same as the Euclidean angle.

Now let’s consider isometries. Let Isom(H) be the group of Riemannian isometries of
(H, gH), and similarly, Isom(D) be the group of Riemannian isometries of (D, gD). We
come to our first result:

Proposition 5.1. GH ⊂ Isom(H).

Note that GH isn’t all isometries, as not all isometries are orientiation preserving.

Proof. Recall that GH = PSL2(R) is generated by three kinds of maps:

(i) z 7→ z + b, b ∈ R;

(ii) z 7→ az, a ∈ R;

(iii) z 7→ −1/z.

It suffices to check that (i), (ii) and (iii) are in Isom(H).

(i) If z = φ(z ′) = z ′ + b, then we have

x = x ′ + b dx = dx ′

y = y ′ dy = dy ′.

Thus we have

gH =
dx2 + dy2

y2

metric−−−−−−−−→
induced by φ

(
dx ′
)2

+
(
dy ′
)2

(y ′)2 = gH .

(ii) If z = φ(z ′) = az ′, then x = ax ′, y = ay ′ and

gH =
dx2 + dy2

y2
−→

a2
(
dx ′
)2

+ a2
(
dy ′
)2

a2 (y ′)2 = gH .

(iii) If z = φ(w) = −1/w, then

dz =
dw

w2
and dz =

dw

w2 .

Then we have

gH =
dx2 + dy2

y2
=

dz dz(
1
2 (z − z)

)2 −→

(
−dw
w2

)(
−dw
w2

)
(

1
2

(
1
w −

1
w

))2 =
dw dw(

1
2 (w − w)

)2 = gH .
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Corollary 5.2. GD ⊂ Isom(D)

Proof. If ψ ∈ GD, then ψ = φ0χφ
−1
0 , where χ ∈ GH . Thus φ0, χ, φ

−1
0 are all isometries,

and the composition of isometries is an isometry. Thus ψ ∈ Isom(D).

Now we consider hyperbolic lines. These are defined in a very similar way to spherical
lines.

Definition. A hyperbolic line in H is L = H ∩ C, where C is a Euclidean line
or circle which is perpendicular to ∂H. A similar definition under the disc model
comes by replacing H by D.

half-plane model disc model

For the rest of the chapter, when we say “line”, we mean “hyperbolic line” unless
otherwise specified.

Once we have lines, then it’s natural to define rays:

Definition. If γ : R → H is a parameterisation of a line, then R = γ([c,∞)) is a
hyperbolic ray starting at γ(c) and with direction γ ′(c).

Now let’s consider a few basic results involving lines:

Lemma 5.3. L is a line in H if and only if φ0(L) is a line in D.

Proof. As φ0 ∈ Mob, it preserves angles, and it takes Euclidean lines and circles to
Euclidean lines and circles. Also, φ0(∂H) = ∂D. Thus, if L is a line in H, then φ0(L)
is a line in D.

The converse is similar.

Lemma 5.4. Given a 6= 0, there is a unique hyperbolic line through 0 ∈ D which is
tangent to a at 0.

Proof. First we show that any line through 0 is a diameter of D. Suppose C is a
Euclidean circle passing through 0, perpendicular to ∂D. Let B be its centre.

Let A be a point in C ∩ ∂D, then 4OAB is isoceles. Thus ∠OAB = π/2 = ∠AOB,
and so the sum of the angles is more than π. But this is ridiculous.

The lemma now follows, sine there’s a unique Euclidean line through 0 with direction
vector a.

Corollary 5.5. If p ∈ H and a 6= 0, then there’s a unique ray stating at p with direction
vector a.

Proof (In D). Choose ψ ∈ GD with ψ(p) = 0, such as ψ(z) =
z − p
pz − 1

.

Then there’s a unique ray R ′ starting at 0 with direction dψp(a) 6= 0. Then the ray R
which we want is R = ψ−1(R ′).
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Proposition 5.6. If R1, R2 are hyperbolic rays starting at p1, p2 ∈ H, then there is
ψ ∈ G with ψ(p1) = p2, ψ(R1) = R2.

Proof (In D). Let R0 be the positive real axis. Let

ψ1(z) =
z − p1

p1z − 1
.

If ψ1(p1) = 0, then ψ1(R1) is a radius of D.

•
θ

R0

Let ψR(z) = e−iθψ1(z), where θ is the angle between R0 and ψ1(R1). Then ψR1(R1) =
R0. Construct R2 similarly, and then take ψ = ψ−1

R2
◦ ψR1 . .́e’

Proposition 5.7. There’s a unique line containing two distinct points p1, p2 ∈ H.

Proof (In D). Choose ψ ∈ GD with ψ(p1) = 0. There’s a unique hyperbolic line L
containing 0 and ψ(p2), namely through the diameter of D through ψ(p2). Thus ψ−1(L)
is the unique line containing p1 and p2.

Proposition 5.8. Two lines L1 and L2 intersect in at most one point in H.

Proof (In H). After applying an element ψ ∈ GH , we may assume that

• ψ(L1) is the positive imaginary axis.

• ψ(L2) is (i) a circle centred on the real axis or (ii) a vertical line

Consider the two cases for ψ(L2):

(i) At most one intersection with ψ(L1) in H (other is in the lower half-plane);

(ii) Has none.

This final proposition motivates the following definition:

Definition. We say that L1 and L2 are haroparallel if they intersect in ∂H and
are ultraparallel if they do not intersect in ∂H.

haroparallel ultraparallel

If L is a line, p 6∈ L, then there are infinitely many ultraparallel lines to L that
pass through p.
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Now we consider distance; specifically, the shortest distance between two points.

Proposition 5.9. If p, q ∈ H, then the line segment from p to q is the shortest path
from p to q in H.

Proof (In H). Let L be the unique line segment from p to q. After composing with
ψ ∈ G, we may assume that L is the positive real axis.

So we have p = ia, q = ib, a, b ∈ R. Let γ(t) be a path from p to q in H. Then

LgH (γ) =

∫ 1

0

√
γ2

1 + γ2
2

γ2
2

dt ≥
∫ 1

0

∣∣∣∣∣γ ′2(t)

γ ′2(t)

∣∣∣∣∣ dt ≥
∣∣∣∣∣
∫ 1

0

γ ′(t)

γ(t)
dt

∣∣∣∣∣ = |ln b− ln a| =
∣∣ln(b/a)

∣∣ .
with equality if and only if γ ′1 = 0 and γ ′2 has constant sign; that is, if γ is a vertical
line segment.

Corollary 5.10. The distance from ia to ib in H is
∣∣ln(b/a)

∣∣.
Corollary 5.11. The distance from 0 to reiθ in D is ln

[
(1 + r)/(1− r)

]
= 2 tanh−1 r.

5.5 Isometries of the hyperbolic plane

Lecture 13
We extend complex conjugation to a map c : C∞ → C∞ by setting c(∞) =∞. Now, if
φA is the Mbius transformation defined by the matrix A ∈ GL2(C), then we see that

φA ◦ c = c ◦ φĀ.

Definition. The extended Mbius group is given by

Mob = {φ : C∞ → C∞ : φ ∈ Mob or φ ◦ c ∈ Mob} .

We observe that c2 = ι, so the second condition is equivalent to saying that φ = ψ ◦ c,
where ψ ∈ Mob. It follows from our first equation that the extended Mbius group is
closed under composition, and thus it indeed forms a group, containing the Mbius group
as an index two subgroup.

Then elements of Mob are orientation preserving, while elements of Mob not in Mob
are orientation reversing. We can compare this to rotations and reflections in Euclidean
geometry. We already have our rotations (given by Mbius maps), so now let’s consider
reflections:

Definition. If C ⊂ C∞ is a Euclidean line or circle, the reflection in C is the
extended Mbius transformation defined by

RC = ψ−1 ◦ c ◦ ψ,

where ψ ∈ Mob satisfies φ(C) = R ∪ {∞}.

Hopefully this definition is reasonably intuitive; now we just need to check that it makes
sense. We need to check that our choice of ψ doesn’t matter. So suppose we have
ψ ′(C) = R∪{∞}. Then ψ ′ ◦ψ−1(R) = R, and so ψ ′ ◦ψ−1 = φA, for some A ∈ GL2(R).
(As in the Euclidean plane, two reflections form a rotation.) Then

ψ ′
−1 ◦ c ◦ ψ ′ = ψ−1 ◦ φ−1

A ◦ c ◦ φA ◦ ψ = ψ−1 ◦ c ◦ ψ,

and so RC is well-defined.
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Example 5.12. If C is the unit circle, then RC = ψ0 ◦ c ◦ ψ−1
0 , and so

RC(z) = ψ0

(
−i z + 1

z − 1

)
=
−i z+1

z−1 − i
−i z+1

z−1 + i
=

1

z
.

More generally, if Cr is a circle of radius r centred at 0, then RCr = ψr ◦RC1 ◦ψ1/r,
where ψa(z) = az. Thus RCr = r2/z.

Proposition 5.13. Mob is generated by reflections.

Proof. It is enough to check that the maps

(i) z 7→ z + b, b ∈ C;

(ii) z 7→ az, a ∈ C, a 6= 0;

(iii) z 7→ 1/z;

are compositions of reflections, since these maps generate Mob.

Map (i) is generated by RL1◦RL2 , where L1 and L2 are two Euclidean lines perpendicular
to b and separated by a distance b/2.

For map (ii), multiplication by a ∈ R is RC1 ◦ RC2 , where C2 is the unit circle and C1

is a circle of radius
√
a centred at the origin, while multiplication by eiθ is RL1 ◦ RL2 ,

where L1 and L2 are two lines which intersect in an angle θ/2 at the origin. Using these
two maps, we can compose for any a ∈ C\{0}.

Finally, map (iii) is the composition of reflection in the unit circle with reflection in R.
This completes the proof.

We can view the groups Isom(S2), Isom(R2) and Isom(D) as subgroups of the extended
Mbius group, corresponding to the extension of the following subgroups of Mob by c:

Isom+(S2) =

φA : A =

(
α β
−β α

)
,detA = 1

 ,

Isom+(R2) =

{
φA : A =

(
α β
0 α

)
,detA = 1

}
,

Isom+(D) =

φA : A =

(
α β
β α

)
,detA = 1

 ,
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6 Geodesics

Let g be a Riemannian metric on some open set U ⊂ R2, say

g = E dx2 + 2F dx dy +G dy2.

The basis problem we want to answer is: given p, q ∈ U , how can we find the shortest
path with respect to g from p to q, supposing it exists? These shortest paths are the
analogues of lines in hyperbolic space.

6.1 Energy functionals

Let γ : [0, 1]→ U be a smooth path. As we’ve seen before the length is

Lg(γ) =

∫ 1

0
|γ ′(t)|g dt.

This is invariant under reparameterisation:

Lg(γ ◦ f) = Lg(γ),

where f : [0, 1]→ [0, 1] is monotone and continuous.

Now we introduce a new function, which is not invariant under reparameterisation. This
might seem like a bad thing, but actually it makes our lives a lot easier.

Definition. The energy of a smooth path γ : [0, 1]→ U is

Eg(γ) =

∫ 1

0
|γ ′(t)|2g dt.

Recall the Cauchy-Schwarz inequality, which we’ve met in many different contexts:∫
ab ≤

√∫
a2 ·

√∫
b2,

with equality if and only if a = λb or b = λa, for some λ. Then

Lg(γ) =

∫ 1

0
|γ ′(t)|g dt ≤

√∫ 1

0
|γ ′(t)|2g dt ·

√∫ 1

0
dt =

√
Eg(γ),

with equality if and only if |γp(t)|g = λ·1 (a constant function); that is, if γ has constant

speed. Now, every γ with γ ′(t) 6= 0 for all t has a constant speed reparametrisation;
consider

γ̃ = γ ◦ f, f : [0, 1]→ [0, 1], f(s) = F−1(s),

where F : [0, 1]→ [0, 1] is given by

F (s) =

∫ s
0 |γp(t)|g dt∫ 1
0 |γp(t)|g dt

.
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Definition. If p, q ∈ U , then the set of paths from p to q is given by Ωp,q; formally,

Ωp,q =
{
γ : [0, 1]→ U smooth : γ(0) = p, γ(1) = q

}
.

Proposition 6.1. The following two conditions are equivalent:

(i) E(γ0) ≤ E(γ) for all γ ∈ Ωp,q;

(ii) L(γ0) ≤ L(γ) for all γ ∈ Ωp,q, and γ has constant speed.

Proof. (i) =⇒ (ii). If γ̃0 has constant then, then

E(γ̃0) =
[
L(γ̃0)

]2
=
[
L(γ0)

]2 ≤ E(γ0),

with equality if and only if γ0 has constant speed; that is, γ0 = γ̃0.

(ii) =⇒ (i). We have

E(γ0) =
[
L(γ0)

]2 ≤ [L(γ̃0)
]2 ≤ E(γ),

which is what we require.

Note. If γ ′(a) = 0 for some a ∈ [0, 1], then can always find F such that E(γ ◦f) < E(γ).

6.2 Calculus of variations

Given H = H(x, y, z, w), suppose γ ∈ Ωp,q minimises

Φ(y) =

∫ 1

0
H(γ1(t), γ2(t), γ ′1(t), γ ′2(t)) dt

if, for example,

H(x, y, z, w) = E(x, y) z2 + 2F (x, y) zw +G(x, y)w2.

Then Φ(γ) = Eg(γ).

For any δ : [0, 1]→ R2 with δ(0) = δ(1) = 0, if

(γ + εδ)(t) = γ(t) + ε δ,

then γ + εδ ∈ Ωp,q, when ε� 1. Thus ε = 0 minimises Φ(γ + εδ):

0 =
d

dε
Φ(γ + εδ)

=

∫ 1

0

d

dε

[
(H(γ1 + εδ1, γ2 + εδ2, γ

′
1 + εδ ′1, γ

′
2 + εδ ′2)

]
dt

=

∫ 1

0

[
Hxδ1 +Hyδ2 +Hzδ

′
1 +Hwδ

′
2

]
dt. (6.2)

Now we have∫ 1

0
Hzδ

′
1 dt = [Hzδ1]10 −

∫ 1

0

d

dt
(Hz) δ1 dt = −

∫ 1

0

d

dt
(Hz) δ1 dt,

as δ is a closed curve.
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Returning to (6.2), we see that∫ 1

0

[(
Hx −

dHz

dt

)
δ1 +

(
Hy −

dHw

dt

)
δ2

]
dt ≡ 0,

for any δ1, δ2 with δi(0) = δi(1) = 0, i = 1, 2.

This gives us the Euler-Lagrange equations:

Hx =
dHz

dt
and Hy =

dHw

dt
.

6.3 Geodesic equations

In our case, we have

H(x, y, z, w) = E(x, y) z2 + 2F (x, y) zw +G(x, y)w2.

Simple differentiation gives us

Hx = Ex z
2 + 2Fx zw +Gxw

2 and Hz = 2Ez + 2Fw.

Now we write E(x, y) = E(γ1(t), γ2(t)), and similar for F and G. Letting a dot denote
differentiation with respect to t, and substituting into the Euler-Lagrange equations, we
obtain the geodesic equations

Exγ̇
2
1 + 2Fxγ̇1γ̇2 +Gxγ̇

2
2 =

d

dt
(2Eγ̇1 + 2F γ̇2),

Eyγ̇
2
1 + 2Fyγ̇1γ̇2 +Gyγ̇

2
2 =

d

dt
(2F γ̇1 + 2Gγ̇2).

This is a (nasty!) system of second-order differential equations.

Definition. A path γ : [a, b]→ U is a geodesic if it satisfies the geodesic equations,
or if is a critical points for the energy functional.

A shortest length, constant speed path is a geodesic.

Theorem 6.3

Given p ∈ U and x ∈ R2, there is a unique geodesic γ : (−ε, ε)→ U with γ(0) = p,
γ ′(0) = x.

Proof. This is an immediate consequence of the existence and uniqueness of solutions
for ordinary differential equations.
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6.4 Exponential map

Lecture 14
For p ∈ U , v ∈ R2, there’s a unique geodesic γv : (−ε, ε)→ U with γ(0) = p, γ ′(0) = v.
So why can’t we extend this over all of R? There are lots of reasons. Consider, for
example, U = R2\{0}. There is not geodesic linking the points −x and x, x ∈ R, since
we cannot go through the point 0.

Lemma 6.4. γv(λt) = γλv(t), λ ∈ R.

Proof. If γ(t) satisfies the geodesic equations, so does γ(λt) (Both sides get multiplied
by λ2.) So γ = γ(λt) is a geodesic with γ(0) = γ(0) = p, γ ′(0) = λ γ ′(0) = λv, and this
gives us γ = γλv.

Definition. The exponential map expp : Bε(0)→ U is given by

expp(v) = γv(1)

Note expp(λv) = γλv(1) = γv(λ), so expp(v) is defined for |v| small.

Proposition 6.5. d expp|0 = I.

Proof. Working from the definition, we have:

d expp|0 = lim
ε→0

expp(εw)− expp(0)

ε

= lim
ε→0

γεw(1)− γ0(1)

ε

= lim
ε→0

γw(ε)− γw(0)

ε

= γ ′w(0) = w.

Corollary 6.6. There are open sets V1 ⊂ R2, V2 ⊂ U with 0 ∈ V1, p ∈ V2, such that
expp : V1 → V2 is a diffeomorphism; that is, differentiable, bijective and the inverse is
differentiable.

Proof. This follows from the inverse function theorem, since I is invertible. Equivalently,
we cause expp to define a new set of coords on V2.

6.5 Geodesic polar coordinates

Pick v1, v2 orthogonal with respect to the Riemannian metric gp. Then we define

vθ = v1 cos θ + v2 sin θ.

This allows us to define the map

T : [0, ε) −→ [0, 2π)× U
(r, θ) 7−→ expp(rvθ)

.

These define a set of geodesic polar coordinates.

Let g = E dr2 + 2F dr dθ +G dθ2 be the metric induced from g using T ; that is,

E = g(Tr, Tr), F = g(Tr, Tθ), G = (Tθ, Tθ).
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Example 6.7. Consider the Euclidean metric g = gE = dx2+dy2, with exponential
map T (r, θ) = exp0(rvθ) = rvθ. Then

x = r cos θ, dx = dr − r sin θ dθ,

y = r sin θ, dy = dr + r cos θ dθ.

Thus we have
g = dx2 + dy2 = dr2 + r2 dθ2.

We consider a similar problem on the third examples sheet:

Example 6.8. We consider the metric on the disc:

g = gD =
4
(
dx2 + dy2

)(
1− x2 − y2

)2 .
Then our map is given by T (r, θ) = 2 tanh−1 rvθ, and the induced metric is

g = dr2 + sinh2 r dθ2.

There’s a common pattern in both of these examples:

Proposition 6.9. Under the notation established thus far, we have E = 1, F = 0,
G = r2G̃(r, θ) where limr→0 G̃(r, θ) = 1.

Proof. First we need a lemma:

Lemma 6.10. Geodesics have constant speed:

|γ ′v(t)|g = |γ ′v(0)|g = |v|g0 .

Proof of the lemma is on the examples sheet. Now we can prove the proposition, tackling
each function in turn:

(i) From our previous work, we have

Tr =
∂

∂r
(γvθ(r)) = γ ′vθ(r).

Using our lemma, we thus have

E = g(Tr, Tr) = g(γ ′vθ , γ
′
vθ

) = g(γ ′vθ(0), γ ′vθ(0)) = g0(vθ, vθ) = 1.

(ii) First consider the energy functional

E[0,r]
g (γvθ) =

∫ r

0
g(γ ′vθ , γ

′
vθ

) dt =

∫ r

0
1 dt = r.

Thus we have

0 =
∂

∂θ

[
E[0,r]
g (γvθ)

]
=

∂

∂ε

[
E[0,r]
g (γvθ + εδ)

]
,

where δ(t) = ∂
∂θ (γvθ(t)) = Tθ(t, θ).
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From our derivativation of the geodesic equations, we know

∂

∂ε

[
E[0,r]
g (γvθ + εδ)

]
= [Hzδ1]r0 + [Hwδ2]r0︸ ︷︷ ︸

(6.2)

+

∫ r

0

(
Hx −

dHz

dt

)
δ1 +

(
Hy −

dHw

dt

)
δ2 dt. (6.11)

The integral cancels to zero, since γvθ is a geodesic. Hence, (6.2) and (6.11) give

2
[
(Eγ̇1 + F γ̇2) δ1 + (F γ̇1 +Gγ̇2) δ2

]
= 2g(γ ′vθ , δ) = 0.

But 2g(Tr, Tθ) = 2g(γ ′vθ , δ), so F = 0.

(iii) First we consider

Tθ(0, θ) =
∂

∂θ
(γvθ(0)) =

∂p

∂θ
= 0

Then we have

∂T

∂r
(Tθ)(0, θ) = Tθr(0, θ) = Trθ(0, θ) =

∂

∂θ
Tr(0, θ)

=
∂

∂θ
(γ ′vθ(0))

=
∂

∂θ
(vθ)

= −v1 sin θ + v2 cos θ = v⊥θ

Unpacking this, we deduce that

Tθ(r, θ) = rv(r, θ),

where limr→0 v(r, θ) = v⊥θ . Now

G = g(Tθ, Tθ) = r2g(v, v) = r2G̃(r, θ),

where
lim
r→0

G̃(r, θ) = lim
r→0

g(v, v) = g|0 (v⊥θ , v
⊥
θ ) = 1.

6.6 Local Gauss-Bonnet

First we set up an open set U ⊂ R2 with geodesic polar coordinates g = dr2 +G dθ2, as
discussed in the previous section. Let 4OBC be a geodesic triangle.

•
O

•
B

•
C

• Pθ

α

γ

β

φ(θ)
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Geodesic triangles are formed by the arcs of three geodesics on a curved surface; straight
lines are used above only for illustrative purposes. Here we have

OB =
{
θ = 0, r ∈ [0, b]

}
,

OC =
{
θ = α, r ∈ [0, c]

}
,

BC =
{

Γ(θ) = (f(θ, θ)), θ ∈ [0, 1]
}
.

Now let Pθ = Γ(θ). Then φ(θ) is the angle between OPθ and BC. Note that φ(0) = π−β
and φ(α) = γ.

The length of this curve BPθ, given by

s(θ) =

∫ θ

0
|Γ ′(u)|du.

We then define

h(θ) :=
ds

dθ
= |Γ ′(θ)|g which gives us

df

ds
=

df

dθ

dθ

ds
=
f ′(θ)

h(θ)
.

Lemma 6.12.
d

ds

(
f ′

h

)
=
Gr
2h
.

Proof. If we parametrise by arc length Γ, then it satisfies the geodesic equations. Letting
a dot denote differentiation with respect to s:

d

ds

[
2E Γ̇1 + 2F Γ̇2

]
= Er Γ̇2

1 + Fr Γ̇1 Γ̇2 +Gr Γ̇2
2.

Most terms didsppaear, leaving

d

ds

(
2

df

ds

)
= Gr

(
dθ

ds

)2

.

Finally, this gives us

2
d

ds

(
f ′

h

)
=
Gr
h2
,

which is easily rearranged to give the result.

Lemma 6.13. dφ
dθ ≡ φ

′ = (−
√
G )r.

Proof. In the diagram above, OPθ is a ray of constant θ, parameterised by ρ(u) = (u, θ)
and ρ ′(u) = (1, 0). Now Γ ′ = (f ′, 1), and then

cosφ =
g(Γ ′, ρ)

|Γ ′|g|ρ ′|g
=

f ′

h · 1
=
f ′

h
. (∗)

Now we also consider

sin2 φ = 1− cos2 φ = 1−
(
f ′

h

)2

= 1− (f ′)2

(f ′)2 +G
=

G

(f ′)2 +G
=
G

h2
. (∗∗)

We thus have sinφ =
√
G/h. Then we differentiate (∗):

−φ ′ sinφ =

(
f ′

h

) ′
=
Gr
2h
,

by the previous lemma. Then

φ ′ = − Gr
2h sin θ

= −Gr
2h

(
h√
G

)
= − Gr

2
√
G

= −(
√
G )r.
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This leads us to one of the main theorems of this chapter:

Theorem 6.14: Local Gauss-Bonnet theorem

For a geodesic triangle as described previously,

δ(OBC) = α+ β + γ − π =

∫∫
OBC

−(
√
G )rr√
G

dAg.

Proof. We have dAg =
√

deg g =
√
G , so∫∫

OBC

(−
√
G )rr√
G

dAg =

∫ α

0

∫ f(θ)

0
(−
√
G )rr dr dθ

=

∫ α

0

[
−(
√
G )r

]f(θ)

0
dθ

=

∫ α

0

[
(
√
G )r

]
r=0
−
[
(
√
G )r

]
r=f(θ)

dθ.

Note G = r2G̃, with G̃ → 1 as r → 0. Thus
√
G = r

√
G̃ , and so (

√
G )r =

√
G̃ +

r(
√
G̃ )r → 1 as r → 0. Then

=

∫ α

0
(1 + φ ′) dθ

=
[
θ + φ(θ)

]α
0

= α+ γ − (π − β)

= α+ γ + β − π.

Corollary 6.15. For 4ABC ⊂ U with geodesic sides, we have

δ(ABC) =

∫∫
4ABC

−(
√
G )rr√
G

dAg.

Sketch proof. Introduce a point O as follows:

β2

β1

x3

x1

x2

α2
α1

γ2

γ1

B
A

O

C

41 = 4OAC
42 = 4BAO
43 = 4CAB

Let ψ = 41 ∪42 ∪43. Then

δ(41) + δ(42) + δ(43) = γ1 + γ2 + α1α2 + β1 + β2 + x1 + x2 + x3 − 3π

= γ1 + γ2 + α1α2 + β1 + β2 − π = δ(44).
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We can apply local Gauss-Bonnet to 41,42,44:

δ(43) = δ(44)− δ(41)− δ(42)

=

∫∫
44

(−1) dAg −
∫∫
41

(−1) dAg −
∫∫
42

(−1) dAg

=

∫∫
43

−(
√
G )rr√
G

dAg,

as required. This is only a sketch proof because we need to consider different configura-
tions of points and triangles, but the other cases are very similar.

Corollary 6.16.

lim
A,B,C→p

δ(ABC)

Area(ABC)
= −(

√
G )rr√
G

∣∣∣∣∣
p

.

Definition. If g is a Riemannian metric on U , then the Gauss curvature at p is
given by

Kp(g) := lim
A,B,C→p

δ(ABC)

Area(ABC)
.

Now, isometries preserve angles and areas, so if φ : (U1, g1) → (U2, g2), then Kp(g1) =
Kφ(p)(g2). The corollary shows that the limit in the definition exists (which is the hard
part to prove), and is given by

−(
√
G )rr/

√
G if g = dr2 +Gdθ2.

Example 6.17. Consider g = gD, the hyperbolic metric on D. In geodesic polar
coordinates, this is equivalent to

g = dr2 + sinh2 r dθ and
√
G = sinh r,

and the curvature is given by

K = −(
√
G )rr√
G

= − sinh r

sinh 1
≡ −1.

Corollary 6.18. If ABC is a triangle in H, then δ(ABC) = −Area(ABC).
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7 Surfaces

7.1 First fundamental form

Suppose σ : U → R3 is a parameterised surface S and let g be the induced metric on U .

Definition. The first fundamental form at a point p ∈ U is the bilinear form on
R2 given by

BI,p := gp(v, w).

This is represented by the matrix(
σx
σy

)(
σx σy

)
=

(
σx · σx σx · σy
σy · σx σy · σy

)
=

(
E F
F G

)
.

7.2 Second fundamental form

The tangent space Tσ(p)S is spanned by dσp(1, 0) = σx and dσp(0, 1) = σy.

The unit normal to Tσ(p)S at σ(p) is

n(p) =
σx × σy∣∣σx × σy

∣∣ .
The map n : U → S2 ⊂ R3 is called the Gauss map.

Definition. The second fundamental form of σ at p is the bilinear form on R2

defined by
BII ,p(v, w) = −dσp(v) · dnp(w)

There’s a useful procedure for computing it. Let

• S =
(
σx σy

)
be the 3× 2 matrix that represents dσ; and

• N =
(
nx ny

)
be the matrix that represents dn.

Then we have

BII (v, w) = −(Sv)T (Nw) = −vTSTNw = −vT
(
σx
σy

)(
nx ny

)
w.

Thus BII is given by the matrix

−
(
σx
σy

)(
nx ny

)
= −

(
σx · nx σx · ny
σy · nx σy · ny

)
=

(
L M1

M2 N

)
.

Lemma 7.1. (
L M1

M2 N

)
=

(
σxx · n σxy · n
σyx · n σyy · n

)
Proof. If σx ∈ Tσ(p)S, then σx · n = 0. Then σxx · n+ σx · nx = 0, so −σx · nx = σxx · n.
Thus L = σxx · n. Other entries are similar.

Corollary 7.2. BII is symmetric.

Proof. We have σxy = σyx, so done.
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Example 7.3. We have σ(θ, z) = (cos θ, sin θ, z); a cylinder of radius 1. Thus

σθ = (− sin θ, cos θ, 0) and σz = (0, 0, 1).

Then we have (
E F
F G

)
=

(
1 0
0 1

)
and g = dz2 + dθ2,

so this is locally Euclidean. Thus the normal is

n =
σθ × σz
|σθ × σz|

= (cos θ, sin θ, 0)

Taking second derivatives gives

σθθ = (− cos θ,− sin θ, 0) and σθz = σzz = 0.

Thus our matrix is given by(
L M
M N

)
=

(
−1 0
0 0

)
and BII = dθ2.

Theorem 7.4: Gauss’ theorema egregium

If g is the metric induced by σ, then

Kp(g) =
det(BII (σ))

det(BI(σ))
=
LN −M2

EG− F 2
.

See handout.

7.3 Closed surfaces and charts

We have the following basic problem:Lecture 16

Problem. A compact surface S (such as the sphere S 2) cannot be written as the image
of a single map σ : U → S, where U is open in R2.

This is actually a theorem, which can be proved using Algebraic Topology.

Solution. Cover S with open sets, each of which is parameterised. This gives us some-
thing close to what we want. We require the following definition:

Definition. If S ⊂ R3, a chart for S is an open set V ⊂ S and a bijective map
f : V

open−−−→ R2 such that σ = f−1 is a parametrisation.

It might seem strange to think of the inverse of the map, but later it will be more
convenient to think of charts in this way.

If fi : Vi → Ui, i = 1, 2 are two charts on S, then the transition function φ12 :

f1(V1 ∩ V2)→ f2(V1 ∩ V2) is given by φ12 = f2 ◦ f−1
1 .

We say that f1 and f2 are compatible if φ12 and φ21 = φ−1
12 are both differentiable.
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This might seem like a strange statement to make, because after some algebra we can
prove that it always holds for embedded surfaces (the only surfaces that we’ve been
considering). But later, when we consider abstract surfaces, this will turn out to be
very useful.

Definition. An atlas for S ⊂ R3 is a set of compatible charts fi : Vi → Ui such
that the Vi covers S. We say S is an embedded surface in R3 if it has an atlas.

Example 7.5. An atlas for S 2 ⊂ R3 is

• π1 : S2 − {N} → R2 is stereographic projection from the north pole N ;

• π2 : S2 − {S} → R2 is stereographic projection from the north pole S.

We treat R2 − {0} as C∗, and then our transition function is

φ12 : C∗ −→ C∗
z 7−→ 1/z

.

Metrics

If f1, f2 are compatible charts on S, then f−1
i induces a Riemannian metric gi on Ui,,

given by
gi(v, w) = (dfi)

−1(v) · (df−1
i )(w).

Lemma 7.6. φ12 : (f1(V1 ∩ V2), g1))→ (f2(V1 ∩ V2), g2) is an isometry.

Proof. Working through the algebra:

g2(dφ12(v),dφ12(w)) = (df2)−1(df2 ◦ (df1)−1(v)) · df−1
2 (df2 · (df1)−1(w))

= df−1
1 (v) · df−1

1 (w)

= g1(v, w).

If S ⊂ R3 is a smoothly embedded surface, and p ∈ S, then the Gauss curvature is given
by Kp(S) := Kf(p)(g), where f : V → U is a chart defined in a neighbourhood of p and
g is the metric induced on f .

The lemma implies that this is well-defined.

Similarly, γ : (a, b) → S is a geodesic if f ◦ γ is a geodesic with respect to the metric g
induced by f , where f is any chart of S.

7.4 Abstract surfaces

Suppose S is a Hausdorff, second-countable topological space. A chart on S is an open
set V ⊂ S and a bijective map f : V → U ⊂ R2, with U open. (Don’t worry if some
of these terms are unfamiliar; they will be introduced formally in Metric & Topological
Spaces. They are cited here merely for completeness.) Many definitions are the same as
with closed surfaces:

If f1, f2 are charts on S, then the transition function φ12 : f1(V1 ∩ V2)→ f2(V1 ∩ V2) is
given by φ12 = f2 ◦ f−1

1 .

We say that f1 and f2 are compatible if φ12 are differentiable. This definition is exactly
the same as before, but now it has teeth. In the embedded case, we merely need to ask
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that f−1
1 be differentiable for f1 and f2 to be compatible. In this case, it doesn’t make

sense to ask that f−1
1 be differentiable, so this is actually a useful distinction to make.

An atlas on S is a set of compatible charts fi : Vi → Ui such that the Vi cover all of S.

Definition. An abstract smooth surface is a space S as above together with an
atlas on S.

In some sense, there’s nothing special about two dimensions in this definition. We could
similarly define an abstract smooth n-manifold. Some other properties aren’t so nice
though. There are some four-manifolds which don’t admit any structure as a smooth
manifold, whereas R4 can be made into a smooth manifold in uncountably many ways.

In almost all cases, it is better to think about smooth manifolds, but these are not dis-
cussed in this course. We mention them here only for completeness, and will henceforth
restrict our discussion to surfaces.

Example 7.7. Consider the torus T 2 = R2/Z2. There is a projection map π :

R2 → T 2. Charts on T 2 are inverses of maps πU : U → T 2, the restriction of
π to an open set U = Bε(p), ε < 1/2. Transition functions are translations by
(n,m) ∈ Z2.

Definition. If {fi : Vi → Ui} is an atlas on an abstract surface S, then a Rie-
mannian metric on S is a set of metrics gi on Ui so that the transition functions
φij(fi(Vi ∩ Vj), gi)→ (fj(Vi ∩ Vj), gj) are all isometries.

In an embedded surfaces, we get these as isometries for free. Here, we have to include
it as part of the definition.

Example 7.8. The flat metric on T 2 is defined by taking the atlas in the previous
example, and equipping each U with the Euclidean metric dx2+dy2. The transition
functions are all translations, so isometries under gE . The Gauss curvature of g is
identically zero.

However, there is no way to embed T 2 into R3 such that the Gauss curvature is
identically zero (see examples sheet).

In some sense, it is better to think of this embedding as treating T 2 as the quotient
of (R2, gE), by the action of a group of isometries.

Here the phrase flat metric is used to describe a surface (or manifold) with identically
zero Gauss curvature.

Example 7.9. The Mbius strip also has a flat metric. The strip is given by
M = R× (−1, 1)/G, where G ∼= Z and K · (X,Y ) = (x+ k, (−1)k + y). (Take the
two sides of an infinite strip and glue them together with a strip, as we illustrated
previously.) Again, this is an isometry of the Euclidean metric.



Surfaces | 63

7.5 Global Gauss-Bonnet

This leads us to the final theorem of the course, generalising the local Gauss-Bonnet
theorem we saw previously:

Theorem 7.10

If (S, g) is a compact abstract surface equipped with a Riemannian metric g, then

2π χ(S) =

∫
S
K(g) dAg.

There are all sorts of beautiful theorems like this, which relate global topological infor-
mation to local properties. This is not an isolated example, although it is the only such
theorem we study in this course.

Example 7.11. Take S = S 2 and let g = g S be the spherical metric. We know
Gaussian curvature is K ≡ 1. Then

2π · 2 =

∫
S2

1 dA = 4π,

and everything is consistent.

The idea behind the theorem is quite easy. Technical details are needed to make it into
a complete proof; here we present the main ideas.

Sketch proof. Find a geodesic triangulation of S (that is, a triangulation where edges
are geodesics), and so that each face is contained in a chart. The idea is to start with
any triangulation, and subdivide the edges, replacing small edges by geodesics.

•

• •

•
•

•

Importantly, this does not change the topology of the triangulation.

Now suppose triangulation has V vertices, E edges and F faces. We know that E = 3
2F

(recall our discussion of the Euler characteristic for the sphere). Then∫∫
S
K dAg =

F∑
i=1

∫∫
fi

K dAg

where fi is the ith face. Then we apply local Gauss-Bonnet, and letting αij , j = 1, 2, 3
be the angles in fi:

=

F∑
i=1

δ(fi)

=
F∑
i=1

(αi1 + αi2 + αi3 − π)

=
∑
i,j

αij − πF = 2πV − πF = 2π (V − E + F ) .
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A Appendix: Review sheets

A.1 Euclidean geometry

Lines:

• A line is the shortest path between two points.

• Plane separation: the complement of a line is a disconnected topological space.

• There is a unique line passing through two distinct points.

• Two distinct lines intersect in at most one point.

• Given a point x and a line L not containing x, there is a unique line passing
through x and parallel to L.

• Given a point x and a line L not containing x, there is a unique line passing
through x and perpendicular to L.

Circles:

• A line and a circle intersect in at most two points.

• Two distinct circles intersect in at most two points.

• The perimeter of a circle of radius R is 2πR.

Isometries:

• If F1, F2 are orthogonal frames, then there is a unique isometry taking F1 to F2.

• Any isometry which fixes three non-colinear points is the identity.

• Any isometry can be written as the composition of at most three reflections.

Triangles:

• The sum of the interior angles in a triangle is π.

• If A1, A2, A3 and A ′1, A
′
2, A

′
3 are two sets of non-colinear points with d(Ai, Aj) =

d(A ′i , A
′
j), then there is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

• If instead we have d(A1, Aj) = d(A ′1, A
′
j) and ∠A2A1A3 = ∠A ′2A

′
1A
′
3, then there

is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

Trigonometry:

• If 4ABC has sides a, b, c and opposite angles α, β, γ, then

sinα

a
=

sinβ

b
=

sin γ

c
, c2 = a2 + b2 − 2ab cos γ.
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A.2 Spherical/projective geometry

Spherical lines:

• A line is the shortest path between two points.

• Plane separation: the complement of a line is a disconnected topological space.

• There is a unique line passing through two distinct, non-antipodal points.

• Two distinct lines intersect in two points.

• Given a point x and a line L not containing x, there is a line passing through x
and perpendicular to L.

Projective lines:

• A line is the shortest path between two points.

• The complement of a line is connected.

• There is a unique line passing through two distinct, points.

• Two distinct lines intersect in exactly one point.

• Given a point x and a line L not containing x, there is a line passing through x
and perpendicular to L.

Circles:

• A line and a circle which is distinct from it intersect in at most two points.

• Two distinct circles intersect in at most two points.

• The perimeter of a circle of radius R is 2π sinR.

Isometries:

• If F1, F2 are orthogonal frames, then there is a unique isometry taking F1 to F2.

• Any isometry which fixes three non-colinear points is the identity.

• Any isometry can be written as the composition of at most three reflections.

Triangles:

• The sum of the interior angles in a 4ABC is π + Area(ABC).

• If A1, A2, A3 and A ′1, A
′
2, A

′
3 are two sets of non-colinear points with d(Ai, Aj) =

d(A ′i , A
′
j), then there is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

• If instead we have d(A1, Aj) = d(A ′1, A
′
j) and ∠A2A1A3 = ∠A ′2A

′
1A
′
3, then there

is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

Trigonometry:

• If 4ABC has sides a, b, c and opposite angles α, β, γ, then

sinα

sin a
=

sinβ

sin b
=

sin γ

sin c
,

cos a = cos b cos c+ sinα sin b sin c,

cosα = − cosβ cos γ + sin a sinβ sin γ.
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A.3 Hyperbolic geometry

Models:

• Hyperboloid: S = {(x, y, z) : x2 +y2−z2 = −1, z < 0}, with the Minkowski metric
dx2 +dy2−dz2 on R3. Lines are intersections of S with planes through the origin.

• Unit disk model: D =
{
z ∈ C : |z| < 1

}
with metric

gD =
4
(
dx2 + dy2

)(
1− x2 − y2

)2 .
Lines are Euclidean lines/circles perpendicular to ∂D.

• Upper half plane model: H =
{
z ∈ C : <(z) > 0

}
with metric

gH =
dx2 + dy2

y2
.

Lines are Euclidean lines/circles perpendicular to ∂H.

Lines:

• A line is the shortest path between two points.

• Plane separation: the complement of a line is a disconnected topogical space.

• There is a unique line passing through two distinct points.

• Two distinct lines intersect in at most one point.

• Given x and L as previously, there is a unique line passing through x perpendicular
to L, and infinitely many lines passing through x which do not intersect L.

Circles:

• In either the upper half-plane or the unit disk models, circles are Euclidean circles
(but their centres are not the Euclidean centres.)

• A line and a circle, or two distinct circles, intersect in at most two points.

• The perimeter of a circle of radius R is 2π sinhR.

Isometries:

• If F1, F2 are orthogonal frames, then there is a unique isometry taking F1 to F2.

• Any isometry which fixes three non-colinear points is the identity.

• Any isometry can be written as the composition of at most three reflections.

Triangles:

• The sum of the interior angles in a 4ABC is π −Area(ABC).

• If A1, A2, A3 and A ′1, A
′
2, A

′
3 are two sets of non-colinear points with d(Ai, Aj) =

d(A ′i , A
′
j), then there is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

• If instead we have d(A1, Aj) = d(A ′1, A
′
j) and ∠A2A1A3 = ∠A ′2A

′
1A
′
3, then there

is a unique φ ∈ Isom(R2) with φ(Ai) = A ′i .

Trigonometry:

• If 4ABC has sides a, b, c and opposite angles α, β, γ, then

sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
,

cosh a = cosh b cosh c− cosα sinh b sinh c,

cosα = − cosβ cos γ + cosh a sinhβ sinh γ.

End of notes


	Euclidean geometry
	Geometry in Rn
	Isometries of Rn
	The Euclidean plane

	Spherical geometry
	Basics
	Spherical trigonometry
	Distance (again)
	Isometries
	Angle defect
	Topology of surfaces
	Building surfaces

	MÃ¶bius transformations
	Stereographic projection
	MÃ¶bius group

	Riemannian geometry
	Parameterised spaces
	Riemannian metrics
	Geometry with the Riemannian metric
	Isometries

	Hyperbolic geometry
	Hyperboloid model
	Unit disc model
	Upper half-plane model
	Geometry of the hyperbolic plane
	Isometries of the hyperbolic plane

	Geodesics
	Energy functionals
	Calculus of variations
	Geodesic equations
	Exponential map
	Geodesic polar coordinates
	Local Gauss-Bonnet

	Surfaces
	First fundamental form
	Second fundamental form
	Closed surfaces and charts
	Abstract surfaces
	Global Gauss-Bonnet

	Appendix: Review sheets
	Euclidean geometry
	Spherical/projective geometry
	Hyperbolic geometry


