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Course schedule

Metrics

Definition and examples. Limits and continuity. Open sets and neighbourhoods. Char-
acterizing limits and continuity using neighbourhoods and open sets. [3]

Topology

Definition of a topology. Metric topologies. Further examples. Neighbourhoods, closed
sets, convergence and continuity. Hausdorff spaces. Homeomorphisms. Topological and
non-topological properties. Completeness. Subspace, quotient and product topologies.

[3]

Connectedness

Definition using open sets and integer-valued functions. Examples, including inter-
vals. Components. The continuous image of a connected space is connected. Path-
connectedness. Path-connected spaces are connected but not conversely. Connected
open sets in Euclidean space are path-connected. [3]

Compactness

Definition using open covers. Examples: finite sets and [0, 1]. Closed subsets of compact
spaces are compact. Compact subsets of a Hausdorff space must be closed. The compact
subsets of the real line. Continuous images of compact sets are compact. Quotient
spaces. Continuous real-valued functions on a compact space are bounded and attain
their bounds. The product of two compact spaces is compact. The compact subsets of
Euclidean space. Sequential compactness. [3]

Appropriate books

W.A. Sutherland Introduction to Metric and Topological Spaces. Clarendon 1975 (21.00
paperback).

A.J. White Real Analysis: an Introduction. Addison-Wesley 1968 (out of print)

B. Mendelson Introduction to Topology. Dover, 1990 (5.27 paperback)
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1 Metric spaces

1.1 Introduction

We start by considering Euclidean space Rn, equipped with the standard Euclidean
inner product: given vectors x,y ∈ Rn with coordinates xi, yj , respectively, we define

(x,y) :=
n∑
i=1

xi yi,

which is also referred to as the dot product x · y.

From this, we can define the Euclidean norm on Rn:

‖x‖ := (x,x)1/2 ,

which represents the length of the vector x.

This allows us to define a distance function:

d2(x,y) :=‖x− y‖ =

 n∑
i=1

(xi − yi)2

1/2

.

This is an example of a metric.

Definition. A metric space (X, d) consists of a set X and a function, called the
metric, d : X ×X → R such that for all P,Q,R ∈ X:

(i) d(P,Q) ≥ 0 with equality if and only if P = Q;

(ii) d(P,Q) = d(Q,P );

(iii) d(P,Q) + d(Q,R) ≥ d(P,R).

Condition (iii) is called the triangle inequality. This comes from a simple result in
Euclidean space. Any triangle with vertices P , Q and R satisfies the following property:

the sum of the lengths of two sides of the triangle will be at least the length of the
third side.

In other words, travelling along straight line segments from P to Q, and from Q to R,
the length of the journey is at least that of travelling directly from P to R.

Proposition 1.1. The Euclidean distance function d2 on Rn is a metric (called the
Euclidean metric).

Proof. Conditions (i) and (ii) are obvious in thse case, so we only need to prove (iii).
For (iii), we use the Cauchy-Schwarz inequality: n∑

i=1

xi yi

2

≤

 n∑
i=1

x2
i

 n∑
j=1

y2
j

 ,

or in the inner product notation,

(x,y)2 ≤‖x‖‖y‖ .
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To prove the triangle inequality, we take P = 0 ∈ Rn, and Q to have position vector
x with respect to P , and R to have position vector y with respect to Q = 0, so R has
position vector x + y with respect to P .

Cauchy-Schwarz then gives

‖x + y‖2 = (x + y,x + y)

=‖x‖2 + 2 (x,y) +‖y‖2

≤‖x‖2 + 2‖x‖‖y‖+‖y‖2

=
(
‖x‖+‖y‖

)2
.

Taking square roots gives

d(P,R) =‖x + y‖ ≤‖x‖+‖y‖ = d(P,Q) + d(Q,R).

For completeness, we now state and prove Cauchy-Schwarz:

Lemma 1.2 (Cauchy-Schwarz inequality). For all x,y ∈ Rn, we have

(x,y)2 ≤‖x‖2‖y‖2 .

Proof. The quadratic polynomial in the real variable λ given by

(λx + y, λx + y) =‖x‖2 λ2 + 2 (x,y)λ+‖y‖2

is positive semi-definite (that is, non-negative for all λ). A quadratic polynomial aλ2 +
bλ+ c is positive semi-definite if and only if a ≥ 0 and b2 ≤ ac. This gives us the desired
inequality.

Remarks.

(i) In the Euclidean case, we have equality in the triangle inequality if and only if Q
lies on the straight line segment PR.

(ii) This argument just given also proves Cauchy Schwarz for integrals: if f and g are
continuous functions on [0, 1], then∫

(λf + g)2 =⇒

(∫ 1

0
fg

)2

≤
∫ 1

0
f2

∫ 1

0
g2

as in the previous argument.

Examples 1.3.

(i) For X = Rn, the functions

d1(x,y) :=
n∑
i=1

|xi − yi| or d∞(x,y) := max
i
|xi − yi| ,

are both metrics.

(ii) For any set X, and x,y ∈ X, we can define the discrete metric

ddisc(x,y) :=

{
1 if x 6= y,

0 if x = y.
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(iii) If we take X = C[0, 1] to be the set of continuous functions on [0, 1], then we
can define metrics d1, d2, d∞ on X:

d1(f, g) :=

∫ 1

0
|f − g| dx,

d2(f, g) :=

(∫ 1

0
(f − g)2 dx

)1/2

,

d∞(f, g) := sup
x∈[0,1]

|f(x)− g(x)|.

For d2, the triangle inequality follows from Cauchy-Schwarz for integrals and
the same argument as in the proof of lemma 1.2.

(iv) British Rail metric. Consider Rn with the Euclidean metric d (in the case
n = 2) and let O denote the origin 0. Define a new metric ρ on Rn by

ρ(P,Q) :=

{
d(P,0) + d(0, Q) if P 6= Q,

0 if P = Q,

that is, all the journeys from P to Q 6= P must go via 0. (This is called the
British Rail metric because “All rail journeys have to go via London”.)

Some metrics satisfy a stronger triangle inequality.

Definition. A metric space (X, d) is ultra-metric if d satisfies a stronger condition
(iii)′: for all P,Q,R ∈ X,

d(P,R) ≤ max
{
d(P,Q), d(Q,R)

}
Example 1.4. Take X = Z and p a prime number. The p-adic metric is then
defined as

d(m,n) :=

{
0 if m = n,

1/pr if m 6= n,where r = max{s ∈ N with ps � (m− n)}.

We claim that this is an ultrametric. For proof, suppose d(m,n) = 1/pr1 and
d(n, q) = 1/pr2 . Then

pr1 � (m− n)

pr2 � (n− q)

}
=⇒ pmin{r1,r2} � (m− q).

So for some r ≥ min{r1, r2}, we have

d(m, q) =
1

pr
≤ 1

pmin{r1,r2}
= max

{
1

pr1
,

1

pr2

}
= max

{
dp(m,n), dp(n, q)

}
,

as desired.

This can be extended to a p-adic metric on Q. For any x, y ∈ Q with x 6= y, we can
write x− y = prm/n, r ∈ Z, with m,n coprime to p. Then we define d(x, y) = 1/pr

as before. Minor modifications to the prior proof will show that this yields (Q, dp)
as an ultra-metric space.
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Definition. We say that two metrics ρ1 and ρ2 on a set X are Lipschitz equivalent
if there are some 0 < λ1 ≤ λ2 ∈ R such that

λ1ρ1 ≤ ρ2 ≤ λ2ρ1.

Remark. For metrics d1, d2 and d∞ on Rn, we can show that

d1 ≥ d2 ≥ d∞ ≥ d2/
√
n ≥ d1/n,

and so these are Lipschitz equivalent.

Of course, not all metrics are Lipschitz equivalent. Consider the following counterex-
ample:

Proposition 1.5. On C[0, 1], the metric d1 and d∞ are not Lipschitz equivalent.

Proof. For n ≥ 2, let fn ∈ C[0, 1] be given by

√
n

1
n

2
n

10

fn(x) =


x/
√
n if 0 ≤ x < 1/n,

2
√
n− x/

√
n if 1/n ≤ x < 2/n,

0 if 2/n ≤ x ≤ 1.

Then d1(fn, 0) is the area of the triangle, while d∞(fn, 0) is
√
n. Thus we have

lim
n→∞

d1(fn, 0) = 0 and lim
n→∞

d∞(fn, 0) =∞,

and so these two metrics cannot possibly be Lipschitz equivalent.

Exercise 1.6. Continuing the example above, show that d2(fn, 0) =
√

2/3 for all
n, and so d2 is not Lipschitz equivalent to d1 or d∞ on C[0, 1].
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1.2 Open balls and open sets

Definition. Let (X, d) be a metric space, P ∈ X and δ > 0. The open ball of
radius δ about p is given by

Bd(P, δ) :=
{
Q ∈ X : d(P,Q) < δ

}
,

often also denoted by B(P, δ) or Bδ(P ).

Examples 1.7.

(i) In (R, d1), open balls are open intervals of the form (P − δ, P + δ).

(ii) In R2, we obtain different open balls depending on our choice of metric:

• In (R2, d1), we obtain tilted squares or “diamonds”.

• In (R2, d2), we obtain open discs of radius δ.

• In (R2, d∞), open balls are squares.

•
δ

(R2, d1)

•
δ

(R2, d2)

•
δ

(R2, d∞)

(iii) In (C[0, 1], d∞), the open ball of radius δ is the area swept out by translating
the image of the function up and down by a distance δ.

0 1

δ

(iv) For any set X, in (X, ddisc), we have B(P, 1
2) = {P} for all P ∈ X.

Definition. A subset U ⊂ X of a metric space (X, d) is called an open subset if,
for all P ∈ U , there is some δ > 0 such that the open ball B(P, δ) is contained in
U . (Note that the empty set ∅ is open, as is the whole space X.)

Under this definition, an open subset is a union of (usually infinitely many) open
balls.

As the opposite to this definition, a subset F ⊂ X is a closed subset if X\F is
open.
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Example 1.8. Analogously to open balls, we can define closed balls:

B(P, δ) :=
{
Q ∈ X : d(P,Q) ≤ δ

}
,

which is the union of the open ball B(P, δ) and its boundary. The name is appro-
priate: these are indeed closed.

Consider: if Q 6∈ B(P, δ), then d(P,Q) > δ, and we can find δ ′ < d(P,Q)− δ. Then
consider a point R ∈ B(Q, δ ′). Then

d(P,R) ≥ d(P,Q)− d(R,Q) > d(P,Q)− δ ′ > δ.

Thus B(Q, δ ′) ⊂ X\B. Then B(P, δ) is closed since the complment is open.

Lemma 1.9.

(i) Both X and ∅ are open subsets of (X, d).

(ii) If {Ui : i ∈ I} are open subsets of (X, d), then so is
⋃
i∈I Ui.

(iii) If U1, U2 are open subsets, then so is U1 ∩ U2.

Proof. Both (i) and (ii) are easy, and left as exercises.

For (iii): if P ∈ U1 ∩ U2, then there are open balls B(P, δ1) ⊂ U1 and B(P, δ2) ⊂ U2.
Thus, if δ = min{δ1, δ2}, then B(P, δ) ⊂ U1 ∩ U2.

Definition. If P is a point in (X, d), then an open neighbourhood N of P is an
open subset N 3 P , such as the open balls centred on P .

Example 1.10. Under the British Rail metric ρ on R2, what are the open neigh-
bourhoods of a point P? Recall that we have a point 0 ∈ X,

ρ(P,Q) =

{
d(P, 0) + d(0, Q) if P 6= Q,

0 if P = Q,

where d is the Euclidean metric.

Hence, if P 6= 0, δ < d(P, 0), then we have Bρ(P, δ) = {P}. If P = 0, Bρ(P, δ) is an
open Euclidean disc of radius δ.

Thus, if U ⊂ (R2, ρ) is open, then either 0 6∈ U and U is arbitrary, or U ⊇ Beucl(0, δ)
for some δ > 0 (U contains a Euclidean disc).
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1.3 Limits and continuity

Definition. Suppose x1, x2, . . . is a sequence of points in a metric space (X, d).
We say that xn converges to a limit x (denoted xn → x) if d(xn, x)→ 0 as n→∞.

Equivalently, for any ε > 0, there is some N(ε) such that xn ∈ B(x, ε) for all
n ≥ N . Both of these definitions should be familiar from Analysis.

Examples 1.11.

(i) 1 + p+ p2 + · · ·+ pn−1 → 1

1− p
in (Q, dp).

(ii) Consider the sequences of functions fn defined in the proof of proposition 1.5.
We have different limits, depending on our choice of metric. Clearly in (X, d1),
we have fn → 0, but this is not the case in (X, d2) or (X, d∞).

Proposition 1.12. We have xn → x in (X, d) if and only if, for any open neighbourhood
U 3 x, there is some N such that xn ∈ U for all n ≥ N .

Proof. The “if” direction is clear by taking U = B(x, ε), for arbitrary ε. For the converse,
given an open set U 3 x, there is some ε > 0 such that B(x, ε) ⊂ U . Hence there is
some N such that xn ∈ B(x, ε) ⊂ U for all n ≥ N .

This allows us to rephrase xn → x in terms of open subsets in (X, d).

Example 1.13. Take X = C[0, 1], d = d1, and the function gn given by:

1

1
n

10

gn(x) =

{
1− nx if 0 ≤ x < 1/n,

0 if 1/n ≤ x ≤ 1.

Then gn(0) = 1 for all n, but d1(gn, 0)→ 0; that is, gn → 0 in (X, d1) as n→∞.

Definition. We say that a function f : (X, ρ1)→ (Y, ρ2) is

• continuous at x ∈ X if, given ε > 0, there exists δ > 0 such that ρ1(x, x ′) < δ
implies ρ2(f(x), f(x ′)) < ε for all x ′ ∈ X.

• uniformly continuous on X if, given ε > 0, there exists δ > 0 such that
ρ1(x, x ′) < δ implies ρ2(f(x), f(x ′)) < ε for all x, x ′ ∈ X.

Remark. We may rephrase this: f : (X, ρ1) → (Y, ρ2) is continuous at x ∈ X if,
given ε > 0, there exists δ > 0 such that f(B(x, δ)) ⊂ B(f(x), ε); that is, B(x, δ) ⊂
f−1(B(f(x), ε)).
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Lemma 1.14. If f : (X, ρ1) → (Y, ρ2) is continuous and xn → x in (X, ρ1), then
f(xn)→ f(x) in (Y, ρ2).

Proof. Given ε > 0, there exists δ > 0 such that ρ1(x, x ′) < δ implies ρ2(f(x), f(x ′)) < ε.
As xn → x, we know there exists N such that for all n ≥ N , ρ1(xn, x) < δ. Hence, for
n ≥ N , ρ2(f(xn), f(x)) < ε, and so f(xn)→ f(x).

Example 1.15. Consider the identity map id : (C[0, 1], d∞)→ (C[0, 1], d1). Since
d∞(f, g) < ε is equivalent to supx∈[0,1]

∣∣f(x)− g(x)
∣∣ < ε >, which implies d1(f, g) <

ε, we see that id is continuous.

However, we can use the functions fn in the proof of proposition 1.5 to see that the
identity in the opposite direction, id : (C[0, 1], d1)→ (C[0, 1], d∞), is not continuous.
We note that d1(fn, 0)→ 0 but d∞(fn, 0)→∞ as n→∞.

Now we wish to express continuity of maps purely in terms of open sets.

Proposition 1.16.

(i) A map f : (X, ρ1)→ (Y, ρ2) of a metric space is continuous if and only if, for any
open subset U ⊂ Y , the pre-image f−1(U) is open in (X, ρ1).

(ii) The map f is continuous if and only if, for every closed subset F ⊂ Y , the pre-
image f−1(F ) is closed in (X, ρ1).

Proof.

(i) (⇐) Take U = Bρ2(f(x), ε). If f−1(U) is open, then there exists δ > 0 such that
Bρ1(x, δ) ⊂ f−1(U); that is, ρ1(x′, x) < δ implies ρ2(f(x′), f(x)) < ε.

(⇒) If U ⊂ Y is open, then consider a point x ∈ f−1(U). Since U is open, we
can choose a open ball Bρ2(f(x), ε) ⊂ U . Since f is continuous at x, there exists
δ > 0 such that Bρ1(x, δ) ⊂ f−1(Bρ2(f(x), ε)) ⊂ f−1(U). Since this is true for all
x ∈ f−1(U), we have f−1(U) open.

(ii) Note that f−1(Y \F ) = X\f−1(F ). So if F is closed, then Y \F is open and hence
f−1(Y \F ) is open. Then X\f−1(F ) is open and f−1(F ) is closed.

Conversely, if U is open in Y , then Y \U is closed in Y . Then f−1(Y \U) = X −
f−1(U) is closed in X, and hence f−1(U) is open in X; that is, f is continuous.
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1.4 Completeness

Definition. A metric space (X, ρ) is called complete if, for any sequence x1, x2, . . . ∈
X such that, given ε > 0, there exists N such that for all m,n ≥ N , ρ(xm, xn) < ε,
we have xn → x for some limit point x. That is, every Cauchy sequence in X
converges in X.

Recall that (R, d1) is complete; this is sometimes referred to as Cauchy’s principle of
convergence. However, neither (Q, d1) nor ((0, 1) ⊂ R, dEucl) are complete.

Example 1.17. Let X = C[0, 1] and ρ = d1. This is not complete, for consider fn
as shown:

1

1
2

1
2 + 1

n
10

fn(x) =


1 if 0 ≤ x < 1

2 ,

1− nx if 1
2 ≤ x <

1
2 + 1

n ,

0 if 1
2 + 1

n ≤ x ≤ 1.

Then for m,n ≥ N , we have ρ(fm, fn) ≤ 1/N .

Now, if fn → f ∈ C[0, 1], then
∫ 1

0 |fn − f | → f . But∫ 1

0
|fn − f | ≥

∫ 1/2

0

(
|f − 1| − |fn − 1|

)
+

∫ 1

1/2

(
|f | − |fn|

)
→
∫ 1/2

0
|f − 1|+

∫ 1

1/2
|f | ≥ 0.

Thus we must have ∫ 1/2

0
|f − 1| = 0 and

∫ 1

1/2
|f | = 0,

and our limit is given by

f(x) =

{
1 x ≤ 1/2,

0 x > 1/2,

but this contradicts f ∈ C[0, 1]. Hence this space is not complete.
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2 Topological spaces

2.1 Introduction

We’ve already discussed some of the properties of open subsets of metric spaces. We
can abstract these for a definition of a topological space.

Definition. A topological space (X, τ) consists of a set X and a set (called the
topology) τ of subsets of X (hence τ ⊂ ℘(X), the power set of X). By definition,
we call the elements of τ the open sets, satisfying the three properties

(i) X, ∅ ∈ τ ;

(ii) If Ui ∈ τ for all i ∈ I, then
⋃
i∈I Ui ∈ τ ;

(iii) If U1, U2 ∈ τ , then U1 ∩ U2 ∈ τ (or similarly for finite intersections).

In this sense, a metric space (X, ρ) gives rise to a topology, which we call the metric
topology.

Two metrics ρ1 and ρ2 on a set X are called (topologically) equivalent if the
associated topologies are the same.

Exercise 2.1. Show that Lipschitz equivalence implies equivalence.

Example 2.2. The discrete metrix on a set X gives rise to the discrete topology,
in which all subsets are open; that is, τ = ℘(X).

Examples 2.3 (Non-metric topologies).

(i) Let X be a set with at least two elements, and take τ = {∅, X}. This is the
indiscrete topology.

(ii) Let X be any (infinite) set, and take

τ =
{
∅
}
∪
{
Y ∪X such that X\Y is finite

}
.

Then (X, τ) is a topological space, and τ is the cofinite topology.

If X is R or C, then this is called the Zariski topology, and open sets are
“complements of zeroes of polynomials”. This, and similar Zariski topologies
on Rn and Cn, are very important in Part II Algebraic Geometry.

(iii) Let X be any (uncountable) set, such as R or C, and take

τ =
{
∅
}
∪
{
Y ∪X such that X\Y is countable

}
.

This is the co-countable topology.

(iv) Finally, we consider some finite topologies. Take X = {a, b}. Then there are
four distinct topologies:

• Discrete (a metric topology);

• Indiscrete;

• {∅, {a}, {a, b}};
• {∅, {b}, {a, b}}.
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Remark. A subset Y ⊂ X of a topological space (X, τ) is called closed if X\Y is open,
just as we defined in metric spaces.

We can describe a topology on a set X by specifying the closed sets in X; these will
satisfy

(i) Both ∅ and X are closed;

(ii) If Fi, for i ∈ I, are closed, then so too is
⋂
i∈I Fi.

This description is sometimes more natural, such as with examples (ii) and (iii) above.

Example 2.4. The half-open interval topology τ on R consists of the arbitrary
unions of half-open intervals [a, b), for a < b and a, b ∈ R. Clearly, ∅, R ∈ τ , and
τ is closed under unions. To show that this is a topology, we must prove that it is
also closed under finite intersections.

Suppose U1, U2 ∈ τ . Then for any P ∈ U1 ∩ U2, there is a half-open interval [a, b)
containing P with [a, b) ⊂ U1 ∩ U2, and thus U1 ∩ U2 is open.

For consider: since P ∈ U1, we have P ∈ [a1, b1) ⊂ U . Similarly, since P ∈ U2, we
have P ∈ [a2, b2) ⊂ U2. Now let a = max{a1, a2} and b = min{b1, b2}, and then
P ∈ [a, b) ⊂ U1 ∩ U2.

Thus this is indeed a topology.

Definition. If P is a topological space (X, τ), then an open neighbourhood of P
is any open set U ∈ τ such that P ∈ U .

A sequence of points xn converges to a limit x (written xn → x) if, for any open
neighbourhood U 3 x, there is some N such that for all n ≥ N , xn ∈ U .

Given topological spaces (X, τ1) and (Y, τ2), a map f : (X, τ1)→ (Y, τ2) is contin-
uous if, for any open set U ⊂ Y , the pre-image f−1(U) is open in X.

From this definition, we deduce that f is continuous if and only if, for any closed
set F ⊂ Y , the pre-image f−1(F ) is closed in X.

Examples 2.5. The identity map (R, τEucl)→ (R, cofinite topology) is continuous,
since closed sets in the cofinite topology (that is, finite sets in R), are closed in the
Euclidean topology.

However, the identity map (R, τEucl) → (R, co-countable topology) is not, since
Q ⊂ R is closed in the co-countable topology, but not in the Euclidean topology.

Definition. A map f : (X, τ1)→ (Y, τ2) is a homeomorphism if

(i) f is bijective;

(ii) Both f and f−1 are continuous.

In this case, the open subsets of X correspond precisely (under the bijection f) with
the open subsets of Y . This is an equivalence relation between the two topological
spaces: from a topological point of view, the spaces are the “same”.
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Example 2.6. Let τ1 and τ2 denote the Euclidean topology on R and (−1, 1) ⊂ R,
respectively. Both are metric topologies. Now consider the function f , with inverse
g, given by

f : R −→ (−1, 1)
x 7−→ x/(|x|+ 1)

g : (−1, 1) −→ R
y 7−→ y/(|y| − 1)

Here, both f and g are continuous, and so f (and hence g) are homeomorphisms.

This example shows that “completeness” is a property of the metric, and not just
a “topological property”. Note that R is complete with the Euclidean topology,
while (−1, 1) is not. However, it also shows that, under the homeomorphism, we
obtain a complete metric ρ on (−1, 1) coming from dEucl on R which is topologically
equivalent to dEucl on (−1, 1).

Definition. We call a property on topological spaces a topological property if,
given two homeomorphic spaces (X, τ1) and (Y, τ2), one has the property if and
only if the other has the property also. That is, (X, τ1) has the property if and
only if (Y, τ2) has the property.

Let us consider an important example of a topological property:

Definition. A topological space (X, τ) is called Hausdorff if, for any P 6= Q,
P,Q ∈ X, there are disjoint open sets U 3 P and V 3 Q; that is, we can separate
points by open sets.

Clearly this is a topological property. Let us consider some examples:

Examples 2.7.

(i) R with the cofinite topology is not Hausdorff, since any two non-empty open
sets intersect non-trivially, and the same is true for examples 2.3 (i) to (iii).
But any metric space is clearly Hausdorff, which is why the topologies in
examples 2.3 are non-metric.

(ii) The half-open interval topology on R is Hausdorff: if a < b, a, b ∈ R, then we
have [a, b) ∩ [b, b+ 1) = ∅. We will see on the examples sheet that this is not
a metric topology.
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2.2 Closed sets

Definition. For any set A ⊂ X, we say that x0 ∈ X is an accumulation point for
A if any open neighbourhood U of x0 has U ∩A 6= ∅. (Sometimes these are called
limit points.)

Lemma 2.8. A set is closed if and only if it contains all of its accumulation points;
that is, if x0 ∈ X is an accumulation point for A, then x0 ∈ A.

Proof. (⇒) Suppose A is closed and x0 6∈ A. Then take U = X\A, an open neighbour-
hood of x0. But then U ∩A = ∅, and so x0 is not an accumulation point.

(⇐) Suppose A is not closed, then X\A is not open. Then there exists x0 ∈ X\A
such that no open neighbourhood U of x0 is contained in X\A; that is, any open
neighbourhood U of x0 has U ∩A 6= ∅. Then x0 is an accumulation point of A.

Remark. Suppose we have a convergent sequence xn → x ∈ X, with xn ∈ A for all
n. Then any open neighbourhood U of x0 contains all xn for n � 0. Thus x is an
accumulation point for A, and if A is closed, we must have x ∈ A.

Definition. Let (X, τ) be a topological space and P ∈ X. If there are nested
open neighbourhoods of P , given by N1 ⊃ N2 ⊃ N3 ⊃ · · · , such that for any open
neighbourhood U of P , there exists an m such that Ni ⊂ U for all i ≤ m, then we
say that (X, τ) has countable bases of neighbourhoods (or is first countable).

Example 2.9. Any metric space is first countable: given P ∈ X, we may take the
open balls B(P, 1/n), for n = 1, 2, 3, . . ..

Lemma 2.10. Suppose (X, τ) is first countable, and we have a subset A ⊂ X. If all
convergent subsequences xn → x, xn ∈ A for all n, have their limit x ∈ A, then A is
closed.

Proof. It is sufficient to prove that any accumulation point for A is the limit of some
sequence xn ∈ A, for all n. This gives us A closed.

Suppose x is an accumulation point for A, and let N1 ⊃ N2 ⊃ N3 · · · be a base of open
neighbourhoods for x. Then for each i, there exists xi ∈ A ∩Ni. Hence we construct a
sequence xi, for i = 1, 2, . . ..

For any open neighbourhood U of x, there is an m such that Ni ⊂ U for all i ≥ m.
Hence xi ∈ U for all i ≥ m, which implies xn → x. Hence x ∈ A by the assumption.

On the first examples sheet, we will see a space which shows that we need the first
countable condition here.
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2.3 Interiors and closures

Suppose (X, τ) is a topological space.

• If {Ui}i∈I are open in (X, τ), then so is
⋃
i∈I Ui;

• If {Fi}i∈I are closed in (X, τ), then so is
⋂
i∈I Fi;

as X\
⋂
i∈I Fi =

⋃
i∈I Ui\Fi is open. This motivates the following definitions:

Definition. Given any subset A ⊂ X, the interior of A, denoted Int(A) = A◦,
is the union of all open subsets contained in A. Then Int(A) is an open subset,
Int(A) ⊂ A, and in fact, it is the largest open subset contained in A.

The closure of A, denoted Cl(A) or A, is the intersection of all closed sets which
contain A. Then Cl(A) is a closed subset of X containing A; that is, A ⊂ Cl(A).
In fact, Cl(A) is the smallest closed subset containing A.

Remarks.

(i) For any set A, we have Int(A) ⊂ A ⊂ Cl(A).

(ii) Suppose A,B ⊆ X and A ⊆ B. Then Int(A) ⊆ Int(B) and Cl(A) ⊆ Cl(B).

Examples 2.11.

(i) Consider Q ⊂ R with the Euclidean sopology. Since any non-empty open
subset contains irrationals, we have Int(Q) = ∅. Also Cl(Q) = R.

(ii) Consider [0, 1]. It is easy to see that Int([0, 1]) = (0, 1). We simply remove
the limit points. We can easily go the other way: Cl((0, 1)) = [0, 1].

Definition. The boundary or frontier of A is ∂A = A\A◦.

We say that a subset A ⊆ X is dense if Cl(A) = X.

Proposition 2.12. For any set A ⊂ X:

(i) Int(Cl(Int(Cl(A)))) = Int(Cl(A));

(ii) Cl(Int(Cl(Int(A)))) = Cl(Int(A)).

Proof.

(i) Since Int(Cl(A)) is open and Int(Cl(A)) ⊆ Cl(Int(Cl(A))), taking interiors of both
sides gives

Int(Cl(A)) ⊆ Int(Cl(Int(Cl(A)))).

Now since Cl(A) is closed and Int(Cl(A)) ⊆ Cl(A), taking closures and then inte-
riors of both sides gives

Int(Cl(Int(Cl(A)))) ⊆ Int(Cl(A)).

(ii) Similar argument; see the first examples sheet.

Thus, if we start from an arbitrary set A ⊂ X and take successive interiors and closures,
then we may achieve at most seven distinct sets:

A, Int(A),Cl(A),Cl(Int(A)), Int(Cl(A)), Int(Cl(Int(A))),Cl(Int(Cl(A))).

Indeed, there is a set A ⊂ R for which these seven sets are distinct (see the first examples
sheet).
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2.4 Base of open sets for a topology

Definition. Given a topological space (X, τ), a collection B of open subsets {Ui}i∈I
form a base or basis for the topology if any open set is the union of open sets from
B.

So we might ask, when does an arbitrary collection of subsets {Ui}i∈I form the base of
some topology? It forms a base if, for all i, j, the intersection Ui ∩ Uj is the union of
sets Uk from the collection. If so, then we can define a topology by specifying that any
open subset is just a union of Ui in the collection.

Example 2.13. The half-open interval topology on R has a base consisting of
intervals [a, b) for a < b, a, b ∈ R.

This motivates the following definition:

Definition. A topological space (X, τ) is called secound countable if it has a
countable base of open sets.

Clearly, second countable implies first countable. Consider: for any P ∈ X and an open
set U 3 P , we have U as a union of bases of open sets. These open sets Ui satisfy Ui ⊂ U
and P ∈ Ui, which we require.

2.5 Subspace topology

Definition. If (X, τ) is a topological space and Y ⊂ X, then the subspace topology
on Y has open sets

τ |Y := {U ∩ Y : U ∈ τ} .

It is easy to see that this is a topology. Moreover, consider the inclusion map
i : Y ↪→ X, then i is continuous (since i−1(U) = U ∩ Y ), and the subspace
topology is the “smallest” topology for which i is continuous.

Proposition 2.14.

(i) If B is a base for a topology τ , then

B|Y := {U ∩ Y : U ∈ B}

is a base for a subspace topology.

(ii) If (X, ρ) is a metric space, and ρ1 is the restriction of the metric to Y , then
the subspace topology on Y induced from the ρ-metric on X is the same as the
ρ1-metric topology on Y .

Proof.

(i) This is clear: for any open U =
⋂
α Uα, if Uα ∈ B, then U ∩ Y =

⋂
α(Uα ∩ Y ).

(ii) The base for the metric topology on X is given by the open balls Bρ(x, δ), for
x ∈ X. If x ∈ Y , then Bρ(x, δ) ∩ Y = Bρ1(x, δ) ⊂ Y . In general, Bρ(x, δ) ∩ Y is
the union of ρ1-balls.

Consider: given y ∈ Bρ(x, δ) ∩ Y , choose δ ′ such that Bρ(y, δ
′) ⊆ Bρ(x, δ). Then

Bρ1(y, δ ′) = Bρ(y, δ
′) ∩ Y ⊆ Bρ(x, δ) ∩ Y . Then Bρ(x, δ) ∩ Y , a base for the

subspace topology, is the union of open ρ1-balls.
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2.6 Quotient spaces

Definition. Suppose (X, τ) is a topological space and ∼ is an equivalence relation
on X. Let Y = X/ ∼ be the quotient set, and q : Y → X taking x 7→ [x] be the
quotient set.

Then the quotient topology on Y is given by{
U ⊆ Y : q−1(U) ∈ τ

}
,

the subsets of U of the quotient set Y , for which the union of the equivalence
classes in X corresponding to points of U is an open subset of X.

Remark. Now q is continuous, and the quotient topology is the “largest” topology on Y
for which this is true. It is easy to see that it does form a topology, since τ is a topology
on X.

If f : X → Z is a continuous map of topological spaces such that x ∼ y implies
f(x) = f(y), then there is a unique factorisation, and f , defined by f([x]) = f(x), is

continuous. (As q−1(f
−1

(U)) = f−1(U) is open in X, so f is continuous.)

X
q

//

f

!!
CC

CC
CC

CC
CC

CC
CC

CC
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X/ ∼

∃ !f

��
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�

�

�

�

�

Z

Examples 2.15.

(i) Define ∼ on R by x ∼ y if and only if x− y ∈ Z. Then the map

φ : R/ ∼ −→ T = {z ∈ C : |z| = 1}
[x] 7−→ e2πix

is both well-defined and a homeomorphism. (See Examples Sheet 1, Ques-
tion 15.)

(ii) Define the two-dimensional torus T 2 to be R2/ ∼, where (x1, y1) ∼ (x2, y2) if
and only if x1 − x2 ∈ Z and y1 − y2 ∈ Z. The topology comes from a metric
on T 2 (examples sheet 1, question 18) and so is well-defined. (Note that we
sometimes denote T 2 as R2/Z2).

Remark. In general, we can get some rather nasty (non-Hausdorff, for exam-
ple) topologies for an arbitrary equivalence relation.

(iii) Special case. If A ⊂ X, then we can define ∼ on X by x ∼ y if and only if
x = y or x, y ∈ A. The quotient space is sometimes written as X/A, in which
we scrunch A down to a point. (Note the conflict with example (ii).) Usually
we take A to be closed.

For example, if D is the closed unit disc in C, then the boundary is the unit
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circle C, and D/C is homeomorphic to S 2, the unit sphere. (See examples
sheet 2, question 13.)

Lemma 2.16. Suppose (X, τ) is Hausdorff and A ⊂ X is closed. Suppose further that
for any x 6∈ A, there are open sets U, V with U ∩ V = ∅, U ⊇ A and V 3 x. Then X/A
is Hausdorff.

Proof. Given two points x 6= y in X\A, we have two possibilities:

(i) Neither x nor y correspond to A. In this case, there are unique x, y ∈ X corre-
sponding to x and y. Thus there are

Ux ⊃ A, Vx 3 x such that Ux ∩ Vx = ∅;
Uy ⊃ A, Vy 3 y such that Uy ∩ Vy = ∅.

Since X is Hausdorff, without loss of generality we may assume that Vx ∩ Vy = ∅.
Thus the correpsonding open sets q(Vx) and q(Vy) in X/A separate x and y.

(ii) We have x = q(x), where x ∈ X\A, and y corresponding to A. Then there exist
open sets U ⊃ A and V 3 x such that U ∩ V = ∅. The corresponding open sets
q(U), q(V ) in X/A separate x and y.

2.7 Product topologies

Definition. Given topological space (X, τ) and (Y, σ), we define the product topol-
ogy τ × σ on X × Y as follows: W ⊆ X × Y is open if and only if, for all x, y ∈ X,
there exist open sets U ⊆ X and V ⊆ Y such that x ∈ U , y ∈ V and U × V ⊆W .

In other words, X ×Y has a base of open sets of the form U ×V , where U is open
in X and V is open in Y .

Notice that (U1 × V1)∩ (U2 × V2) = (U1 ∩U2)× (V1 ∩ V2), and so this does indeed form
the base of a topology. We can extend our definition to a product of countably many
spaces:

Definition. If (Xi, τi)
n
i=1 are topological spaces, then the product topology on∏n

i=1Xi is defined by having a base of open sets of the form
∏n
i=1 Ui, where Ui is

open in Xi, for i = 1, . . . , n.

Again, this forms a topology.

Example 2.17. Consider R with the usual topology. The product topology on
R × R = R2 is just the usual metric topology. Basic open sets in the product
topology include the open rectangles I1 × I2 (a product of open intervals I1 and I2

in R), and these form a base for the usual topology on R2.
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Lemma 2.18. Given topological spaces (X1, τ1) and (X2, τ2), the projection maps πi :

(X1 ×X2, τ1 × τ2)→ (Xi, τi) are continuous. Moreover, given a topological space (Y, τ)
with continuous map fi : Y → Xi, there is a unique factorisation, and f (in the diagram)
is continuous.

X1

Y
∃ !f

//______

f1 --

f2
11

X1 ×X2

π1

66mmmmmmmmmmmmmm

π2
((Q

QQ
QQ

QQ
QQ

QQ
QQ

Q

X2

Proof. The first part is easy: we use π−1
1 (U) = U ×X2 and π−1

2 (V ) = X1 × V .

For the second part, define f(y) = (f1(y), f2(y)) ∈ X1 ×X2. The fact that f is unique,
making the diagram commute, is obvious. For any basic open set U × V ⊆ X1 × X2,
where U is open in X1 and V is open in X2, we have f−1(U × V ) = f−1

1 (U)∩ f−1
2 open

in Y .

Further, since any open set W in X1 × X2 is the union of basic open sets, f−1(W ) is
the union of their inverse, and so f−1(W ) is open in W . Thus f is continuous.
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3 Connectedness

3.1 Basic notions

Definition. A topological space X is disconnected if there are non-empty open
subsets U, V with U ∩ V = ∅ and X = U ∪ V . Otherwise X is called connected.

In other words, X is connected if and only if, given open sets U, V with U ∩V = ∅
and X = U ∪ V , either U = ∅ or V = ∅ (equivalently, either U = X or V = X).

Clearly connectedness is a topological property. We can extend this definition to subsets:

Definition. If Y is a subset of the topological space X, then Y is disconnected in
the subspace topology if and only if there are U, V open in X such that U ∩V = ∅,
V ∩ Y 6= ∅ but U ∩ V ∩ Y = ∅ and Y ⊂ U ∪ V . In this case, we say that U and V
disconnect Y .

Proposition 3.1. Let X be a topological space. Then the following are equivalent:

(i) X is connected;

(ii) The only subsets of X that are both open and closed are ∅ and X;

(iii) Every continuous function f : X → Z is constant.

Proof. (i) ⇐⇒ (ii) is trivial, since for U ⊂ X, we consider that U ∪ (X\U) = X.

(i) =⇒ (iii). Suppose there is a non-constant map f : X → Z, then there exists m < n
such that both m,n are in f(X). Then f−1({k : k ≤ m}) and f−1({k : k > m}) are
open, non-empty sets disconnecting X; that is, X is not connected.

(iii) =⇒ (i). Suppose that X is not connected; that is, there are non-empty, disjoint
open U , V such that X = U ∪ V . Consider the map f : X → Z defined by

f(x) =

{
0 if x ∈ U,
1 if x ∈ V.

This is continuous (even locally constant) function, but not globally constant.

Proposition 3.2. A continuous image of a connected space is connected.

Proof. If f : X → Y is a surjective continuous map of topological spaces and if U, V dis-
connect Y , then their pre-images f−1(U), f−1(V ) disconnect X. Thus, if X is connected,
then so is Y .
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Connectedness in R

Definition. A set I ⊆ R is called an interval if, given x, z ∈ I with x ≤ z, we
have y ∈ I for all y such that x ≤ y ≤ z.

We have the cases inf I = a ∈ R and a ∈ I, or a 6∈ I, or inf I = −∞. Similarly, we
have the cases sup I = b ∈ R and b ∈ I, or b 6∈ I, or sup I =∞. Thus any interval
I takes the form [a, b], [a, b), (a, b], [a,∞), (a,∞), (−∞, b], (−∞, b) or (−∞,∞).

Theorem 3.3

A subset of R is connected if and only if it is an interval.

Proof. First suppose that X ⊆ R is not an interval. Then we can find x < y < z with
x, z ∈ X but y 6∈ X. Then (−∞, y) and (y,∞) disconnect X.

Now suppose that I is an interval, and I ⊆ U ∪ V , where U, V are open subsets of R
disconnecting I. Then there exists u ∈ U ∩I, v ∈ V ∩I where, without loss of generality,
u < v. Since I is an interval, [u, v] ⊆ I. Let s = sup[u, v] ∩ U .

If s ∈ U , then s < v, so s 6= v. As U is open, there is δ > 0 with (s − δ, s + δ) ⊂ U .
Hence there is s ′ ∈ [u, v] ∩ U with s ′ > s, contradicting s as an upper bound.

If s ∈ V , then there exists δ such that (s − δ, s + δ) ⊂ V . Then (s − δ, s + δ) ∩ U = ∅
implies [u, v] ∩ U ⊂ [u, s − δ], which contradicts s as a least upper bound. Thus I is
connected.

Corollary 3.4 (Intermediate value theorem). Let a < b and f : [a, b] → R be a con-
tinuous function. If y ∈ [f(a), f(b)] (or [f(b)], f(a)] as appropriate), then there exists
x ∈ [a, b] such that f(x) = y.

Proof. If not, then f−1((−∞, y)) and f−1((y,∞)) disconnect [a, b].

Connected subsets and subspaces

Proposition 3.5. Let {Yα}α∈A be connected subsets of a topological space X, such that
Yα ∩ Yβ 6= ∅ for all α, β ∈ A. Then their union Y =

⋃
α∈A Yα is connected.

Proof. Use proposition 3.1: we wish to prove that any continuous function f : Y → Z
is constant. Now, the restriction fα = f

∣∣
Yα

is constant on Yα, for all α; say, fα(x) = nα
for x ∈ Yα. Then for all β 6= α, there exists z ∈ Yα ∩ Yβ, and we have nα = f(z) = nβ.
Thus f is constant on Y .

Definition. A connected component of a topological spaceX is a maximal conected
subset Y ; that is, if Z ⊆ X is connected and Z ⊇ Y , then Z = Y .

Each point x ∈ X is contained in a unique connected component of X, namely⋃
{Z connected subset of X with x ∈ Z}. This is connected by proposition 3.5,

since x ∈ Z for each Z, and clearly it’s maximal.

Example 3.6. Take X = {0}∪ {1/n : n = 1, 2, 3, . . .}, with the subspace topology.
The connected component containing 1/n is clearly just {1/n}, both open and
closed in X. The component containing 0 is {0}, which is closed but not open.
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Proposition 3.7. If Y is a connected subset of a topological space X, then the closure
Y is connected.

Proof. Suppose f : Y → Z is continuous. Then proposition 3.1 tells us that f |Y is
constant; say f(y) = m for all y ∈ Y . Then given any x ∈ Y , let f(x) = n; then f−1(n)
is an open neighbourhood of x in Y ; that is, of the form U ∩ Y with U open in X.

Since x ∈ Y , this contains a point of Y (where f takes the value m), so n = m, and
hence f is constant on Y . Hence Y is connected.

Remark. Thus connected components of a space are always closed (since they are a
maximal connected subset), but as in the above example, not necessarily open.

Definition. We call a space X totally disconnected if its only connected compo-
nents are single points; that is, its only connected subsets are single points.

Any discrete topological space is totally disconnected, as was the previous example.

Lemma 3.8. If X is a topological space and for all x, y ∈ X with x 6= y, X may be
disconnected by U, V ⊆ X, where x ∈ U and y ∈ V , then X is totally disconnected.

Proof. For any subset Y with points x 6= y, then for U and V as above, U ∩Y and V ∩Y
disconnect Y .

The irrationals R\Q are totally disconnected: use the above lemma, and the fact that
the rationals are dense in the irrationals.

The Cantor set

We start with I0 = [0, 1], and remove (1
3 ,

2
3) to obtain I1 = [0, 1

3 ]∪ [2
3 , 1]. We then remove

the middle third from both [0, 1
3 ] and [2

3 , 1] to obtain I2. Proceed recursively:

0 11
3

2
3

1
9

2
9

7
9

8
9

I0

I1

I2

I3

and so on. Then the Cantor set C is given by

C =
⋂
n≥0

In.

We can understand this in terms of ternary (base 3) expansions; that is, expansions of
the form 0 · a1a2a3 . . ., where each ai = 0, 1, 2. Without loss of generality, we impose
1/3 = 0.022 . . ..

Then I1 consists of numbers with a1 = 0 or 2. Then I2 has a1 = 0 or 2, and a2 = 0 or
2, and so on for I3. Thus C consists of numbers with a ternary expansion where each
ai = 0 or 2.
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Suppose now we are given two points x, y ∈ C with x 6= y. For some n, the ternary
expansions will differ in the nth place (and without loss of generality, they are the same
in all previous places). Now C ⊂ In, which consists of 2n closed intervals, one of which
contains x, and one of which contains y.

Then we can disconnect In by open U, V , where U ∩ V = ∅, x ∈ U and y ∈ V . Then
C = (U ∩ C) ∪ (V ∩ C), and x ∈ U ∩ C, y ∈ V ∩ C. Then lemma 3.8 tells us that C is
totally disconnected.

Note that both C and its complement are uncountable (clear from the ternary expan-
sion).

3.2 Path connectedness

Definition. Let X be a topological space and x, y ∈ X. A path from x to y is a
continuous function φ : [a, b] → X such that φ(a) = x, φ(b) = y) (We sometimes
take take a = 0, b = 1.)

X is path-connected if, for all x, y ∈ X, there is a path from x to y.

Proposition 3.9. The continuous image of a path-connected space is path-connected.

Proof. Suppose X is path-connected and f : X → Y is a continuous surjection. Given
y1, y2 ∈ Y , choose xi ∈ f−1

i (yi), i = 1, 2 and a path γ : [a, b]→ X from x1 to x2. Then
there is a path f ◦ γ : [a, b]→ Y from y1 to y2.

Proposition 3.10. Path connectedness implies connectedness.

Proof. Suppose X is a topological space and X = U ∪ V , with U, V disconnecting X.
Suppose for contradiction that X is not path-connected. If it were, then choose u ∈ U ,
v ∈ V , and there is a continuous function φ : [a, b] → X such that φ(a) = u, φ(b) = v.
Then φ−1(U) and φ−1(V ) are non-empty open subsets of [a, b] which disconnect [a, b].

Note that the converse is false: connectedness does not imply path connectedness, as
the following example shows:

Example 3.11. In R2, first define

I =
{

(x, 0) : 0 < x ≤ 1
}

and J =
{

(0, y) : 0 < y ≤ 1
}
.

Then for n = 1, 2, . . ., define

Ln =
{

(1/n, y) : 0 ≤ y ≤ 1
}
.

Now set X = I ∪ J ∪
(⋃

n≥1 Ln

)
with the subspace topology.

1
2

1
3

1
4

0 1

1

I

J · · ·

Ln, n = 1, 2, . . .

◦



Connectedness | 27

It is easy to see that X is not path-connected: for any continuous path γ(t) =
(γ1(t), γ2(t)) from (1, 0) to (0, 1), there is some s such that γ1(s) = 0 and γ1(t) > 0
for all t < s, so we must also have γ2(s) = 0. This means that γ passes through
(0, 0), but this is not in X.

However, such an X is connected. Suppose f : X → Z is a continuous func-

tion. Then f is constant on J and on Y = I ∪
(⋃

n≥1 Ln

)
. However, the points

(1/n, 1/2) ∈ Y have limit (0, 1/2) ∈ J as n → ∞, and by the continuity of f , the
two constants agree. Thus f is constant on X.

Given a topological space X, we can define an equivalence relation ∼ on X by x ∼ y if
and only if there is a path from x to y in X. This is indeed an equivalence relation:

• Reflexivity: x ∼ x is trivial.

• Symmetry: if φ : [a, b]→ X is a path from x to y, then ψ(t) = φ(−t) gives a path
ψ : [−b,−a]→ X from y to x.

• Transitivity: suppose x ∼ y and y ∼ z. Then there are paths φ : [a, b] → X and
ψ : [c, d]→ X with φ(a) = x, φ(b) = y = ψ(c) and ψ(d) = z. So define a new path
χ : [a, b+ d− c]→ X by

χ(t) =

{
φ(t) a ≤ t ≤ b,
ψ(t+ c− b) b ≤ t ≤ b+ d− c.

Then χ is continuous at all points t ∈ [a, b + d − c] (which is easy to check), and
it gives a path from x to z. Thus x ∼ z.

Definition. The equivalence classes of ∼ are called the path-connected components
of X.

Theorem 3.12

Let X be an open subset of Euclidean space Rn. Then X is connected if and only
if X is path connected.

Proof. Path-connectedness implies connectedness by proposition 3.10.

Now the converse: suppose X is connected and x ∈ X. Let U be the equivalence class
of x under the equivalence relation ∼ defined above.

Now, U is open in X: suppose y ∈ U , whence x ∼ y. Since X is open, there exists δ > 0
such that B(y, δ) ⊆ X. Then for all z ∈ B(y, δ), we have y ∼ z, by taking the straight
line segment. Transitivity implies that x ∼ z for all z ∈ B(y, δ), and thus B(y, δ) ⊂ U ,
and U is open.

Similarly, X\U is open. Suppose y ∈ X\U . Since X is open, there exists δ > 0 such
that B(y, δ) ⊆ X. For z ∈ B(y, δ), we have y ∼ z as above, and then x 6∼ z, hence
B(y, δ) ( X\U .

Since X is connected, we must have X\U = ∅ and U = X. Hence X is path-connected,
since x ∼ y for all y ∈ X.
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3.3 Products of connected spaces

Proposition 3.13. Let X and Y be topological spaces. If X and Y are path-connected,
then so too is X × Y , with the product topology.

Proof. Given (x1, y1) and (x2, y2) ∈ X×Y , we know that there are paths γ1 : [0, 1]→ X
and γ2 : [0, 1]→ Y with γ1(0) = x1, γ1(1) = x2, γ2(0) = y1 and γ2(1) = y2.

Now define a map γ : [0, 1] → X × Y by γ(t) = (γ1(t), γ2(t)). The base for the
topology on X × Y consists of the open sets U × V , with U open in X and V open
in Y . So it is sufficient to prove that γ−1(U × V ) us open for all such U and V . But
γ−1(U × V ) = γ−1(U) ∩ γ−1(V ) is clearly open. So γ is continuous and defines a path
from (x1, y1) to (x2, y2).

Proposition 3.14. If X and Y are connected, then so too is X × Y with the product
topology.

First we make some general comments about product topologies. Given y ∈ Y , the set
X × {y} with the subspace topology is homeomorphic to X, using the projection map
π1 : X × {y} → X. We already know that this map is a continuous bijection.

However, a base for the topology on X × Y consists of open sets U × V , with U open
in X and V open in Y . This implies that a base for the subspace topology on X × {y}
consists of subsets U × {y}, for U open subsets of X. Thus, under π1|X×{y}, open sets
do correspond, and hence π1 : X × {y} → X is a homeomorphism.

Similarly, for x ∈ X, {x} ×X is homeomorphic to Y , and so X × {y} is connected for
all y ∈ Y . Thus {x} ×X is connected for all x ∈ X.

Proof of proposition 3.14. Given a continuous function f : X × Y → Z, it is obvious
that f is constant on each slice {x} × Y and X × {y}, by connectedness.

X

Y

x1

y1 •

x2

y2 •

(x1, y1)

(x2, y2)

0

Given arbitary points (x1, y1), (x2, y2) ∈ X × Y , we deduce that f(x1, y1) = f(x1, y2) =
f(x2, y2) (see diagram). Hence f is constant on X × Y and X × Y is connected.

Remark. A similar argument also proves proposition 3.13: there is a path joining (x1, y1)
to (x1, y2) and a path joining (x1, y2) to (x2, y − 2) in X × Y .
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4 Compactness

4.1 Basic notions

Definition. Let (X, τ) be a topological space. An open cover of X is a collection
of open subsets U = {Uγ : γ ∈ Γ} such that X =

⋃
γ∈Γ Uγ .

If Y ⊂ X, then an open cover of Y is a collection of open subsets in X U = {Uγ :

γ ∈ Γ} such that Y ⊂
⋃
γ∈Γ Uγ .

Remark. Such an open cover of Y provides a base of open sets U = {Uγ ∩ Y : γ ∈ Γ}
for Y with the subspace topology, and conversely.

Definition. A subcover of an open cover U is a subcollection V ⊆ U which is still
an open cover of Y .

Example 4.1. The intervals In = (−n, n), where n = 1, 2, . . ., form an open cover
of R, and In2 is a proper subcover. The intervals Jn = (n− 1, n+ 1), where n ∈ Z,
form an open cover of R with no proper subcover.

Definition. A topological space (X, τ) is compact if every open cover has a finite
subcover.

Examples 4.2. In this sense, R is not compact, as the open covers described above
have no finite subcovers. Any finite topological space is compact, as is any set with
the indiscrete topology (the only open subsets of X being ∅ and X), or with the
cofinite topology.

With this definition, compactness is a topological property.

Lemma 4.3. Let (X, τ) be a topological space with Y ⊂ X. Then Y is compact in the
subspace topology if and only if every open cover {Uγ} of Y has a finite subcover.

Proof. First let {Uγ : γ ∈ Γ} be an open cover of Y , then Y =
⋃
γ∈Γ(Uγ ∩ Y ), where

the Uγ ∩ Y are open in Y . Since Y is compact, there exist γ1, . . . , γn ∈ Γ such that
Y =

⋃n
i=1(Uγi ∩ Y ), and then {Uγi : i = 1, . . . , n} covers Y .

Now the converse. Suppose Y =
⋃
γ∈Γ Vγ , where the Vγ are open in Y . Write Vγ =

Uγ ∩ Y , where the Uγ are open in X and form an open cover of Y . Then there exist
γ1, . . . , γn ∈ Γ such that Y ⊆

⋃n
i=1 Uγi , and hence Y =

⋃n
i=1 Vγi .

Example 4.4. The open interval (0, 1) is not compact: consider the open cover by
intervals (1/n, 1− 1/n for n = 3, 4, . . ..
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Theorem 4.5: Heine-Borel theorem

The closed interval [a, b] ⊂ R is compact.

Proof. Let [a, b] ⊂
⋃
γ∈Γ Uγ , for Uγ open in R. Then set

K =
{
x ∈ [a, b] : [a, x] is contained in a finite union of the Uγ

}
.

Clearly a ∈ K, so K 6= ∅. Let r = supK. Then r ∈ [a, b], and so r ∈ Uγ1 for some
γ1 ∈ Γ. Since Uγ1 is open, there exists δ > 0 such that [r − δ, r + δ] ⊆ Uγ1 .

0 1rr − δ r + δ

Uγ1

By the definition of r, there exists c ∈ [r − δ, r] such that [a, c] is contained in a finite
union of the Uγ . Hence, the same is true for [a, r + δ] ∩ [a, b] (we just need to include
Uγ1 also). But this contradicts r as an upper bound, unless r = b, in which case, the
above argument tells us that [a, b] is covered by finitely many of the Uγ . (There exists
c ∈ [b− δ, b] such that [a, c] is covered by finitely many Uγ , and include Uγ1 also.)

Thus [a, b] is compact.

Proposition 4.6. A continuous image of a compact set is compact.

Proof. Suppose f : (X, τ) → (Y, σ) is a continuous map of topological spaces, and
K ⊆ X is compact. Then we wish to show that f(K) is compact.

Suppose f(K) ⊆
⋃
γ∈Γ Uγ , with Uγ open in Y . Since f is continuous, K ⊂

⋃
γ∈Γ f

−1(Uγ),

and each f−1(Uγ) is open in X. Since K is compact, there exist γ1, . . . , γn ∈ Γ such
that K ⊆

⋃n
i=1 f

−1(Uγi), and hence f(K) ⊆
⋃n
i=1 Uγi .

Proposition 4.7. A closed subset of a compact topological space X is compact.

Proof. Let X be a compact topological space, and K ⊆ X be closed. If K = ∅ then this
is trivial, so assume not. Suppose K ⊆

⋃
γ∈Γ Uγ , where the Uγ are open in X. Then

X = (X\K) ∪
(⋃

γ∈Γ Uγ

)
, where X\K is also open. Since X is compact, there is a

finite subcover, and hence there exists γ1, . . . , γn ∈ Γ such that X = (X\K)∪
(⋃n

i=1 Uγi
)
.

Thus K ⊆
⋃n
i=1 Uγi .

Proposition 4.8. Every compact subset of a Hausdorff topological space is closed.

Proof. Let X be a Hausdorff topological space, and K ⊆ X be compact. If K = X, this
is trivial, so suppose not. Then we show that X\K is open.

Given x ∈ X\K, for any y ∈ K¡ there are disjoint open sets with Uy 3 x and Vy 3 y.
Now {Vu : y ∈ K} is an open cover of K. Since K is compact, there exist y1, . . . , yn ∈ K
such that K ⊆

⋃n
i=1 Vyi . Then U =

⋂n
i=1 Uyi is an open neighbourhood of x with

U ∩K = ∅, so U ⊆ X\K, as required.
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Corollary 4.9. A set X ⊂ R is compact if and only if it is closed and bounded.

Proof. If X ⊂ R is compact, then proposition 4.8 tells us that X is closed (since R is
Hausdorff). It is also bounded: if not, the open sets Um =

{
x ∈ R : |x| < m

}
form an

open cover of X with no finite subcover, contradiction.

Now the converse. Suppose X ⊂ R is closed and bounded. Then there is M such
that |x| ≤ M for all x ∈ X and so X ⊂ [−M,M ]. Since X is closed, R\X is open,
and so (R\X) ∩ [−M,M ] is open in [−M,M ], and X is closed in [−M,M ]. Then by
Heine-Borel, X is compact, and so X is compact by proposition 4.7.

Remark. We’ll see later that the product of finitely many compact spaces is compact,
and hence [−M,M ]n is a compact subset of Rn. So a set X ⊂ Rn is bounded if and
only if ∃M such that X ⊂ [−M,M ]n. From the proof of corollary 4.9, this extends
immediately to show that:

Corollary 4.10. A subset X ⊂ Rn is compact if and only if it is closed and bounded.

Examples 4.11.

(i) Combining this with theorem 3.3, the only connected compact subsets of R
are closed intervals [a, b].

(ii) The Cantor set C ⊂ [0, 1] was defined by C =
⋂
n≥0 In, where [0, 1] = I0 ⊃

I1 ⊃ I2 ⊃ · · · , and In was the diagonal union of 2n closed intervals. Thus
each In is closed, and so C is closed and bounded. Thus C is compact.

We can now combine propositions 4.6, 4.7 and 4.8 into a particular useful result:

Corollary 4.12. Suppose X is a compact space, Y is a Hausdorff space, and f : X → Y
is a continuous bijection. Then f is a homeomorphism.

Proof. Let g : Y → X be the inverse map f−1. We must show that this is continuous.
Let F ⊆ X be closed.

Since X is compact, proposition 4.7 tells us that F is compact. Since f is continuous,
proposition 4.6 tells us that g−1(F ) = f(F ) is compact. Finally, Y is Hausdorff, so by
proposition 4.8, g−1(F ) is closed in Y . Hence g is continuous.

This result is particularly useful in identifying quotient spaces.

Example 4.13. Define ∼ on R by x ∼ y if and only if x − y ∈ Z, and let
T = {z ∈ C : |z| = 1} be the unit circle (with the subspace topology from C). Now
consider the map given by

f : R −→ T
x 7−→ exp(2πix)

This is continuous and induces a bijection f : R/ ∼→ T, which, by definition of the
quotient topology, is also continuous. (See our remark about quotient topologies on
page 19.)

But the quotient map q : R → R/ ∼ restricts to a continuous surjection [0, 1] →
R/ ∼. Since [0, 1] is compact, proposition 4.6 tells us that R/ ∼ is compact. Then
T is Hausdorff, and so corollary 4.12 tells us that f is a homeomorphism.
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In a similar way, we can show that the two-dimensional torus R2/Z2 is homeo-
morphic both the product space S 1 × S 1 (where S 1 is the unit circle), and to the
embedded torus X ⊂ R3, consisting of points ((2+cosφ) cos θ, (2+cosφ) sin θ, sinφ),
where 0 ≤ θ, φ < 2π.

the 2-D torus R2/Z2 the embedded torus X ⊆ R3

In Analysis I, you learnt that continuous real-valued functions on [a, b] ⊆ R are
bounded and attain their bounds. Here, we are using the compactness of [a, b].
This statement is still true, for instance, for continuous real-value functions on the
Cantor set.

Proposition 4.14. Continuous real-valued functions on a compact space X are bounded
and attain their bounds.

Proof. Suppose X is compact and f : X → R is continuous. Then proposition 4.6 tells
us that f(X) is compact, and so corollary 4.10 tells us that f(X) is bounded and closed.

Since f(X) is closed, it contains all of its accumulation points. But sup f(X) and
inf f(X) (which exist because f(X) is bounded) are accumilation points for f(X), so
sup f(X), inf f(X) ∈ f(X), which gives the desire result.

Theorem 4.15

The product of two compact spaces is compact.

Proof. Suppose X and Y are compact and that X × Y =
⋃
γ∈Γ Uγ , where the Uγ are

open in X × Y .

By the definition of the product topology, each Uγ is the union of “basic open sets” of
the form V ×W , where V is open in X and W is open in Y . Thus

X × Y =
⋃
δ∈∆

Vδ ×Wδ,

with Vδ open in X, Wδ open in Y and Vδ ×Wδ a subset of some Uγ .

Now let x ∈ X, and then we have

{x} × Y ⊆
⋃
δ∈∆

Vδ ×Wδ,

such that x ∈ Vδ.

Now, since Y is compact, there exist δ1, . . . , δm such that Y =
⋃m
i=1Wδi .

Then let Vx =
⋂n
i=1 Vδi be an open neighbourhood of x such that Vx×Y ⊆

⋂n
i=1 Vδi×Wδi .

The Vx obtained in this way form an open cover of X, and so there exist x1, . . . , xn such
that X =

⋃n
j=1 Vxj .
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Now X × Y =
⋃n
j=1 Vxj × Y and each Vxj × Y has a finite cover by Vδ ×Wδ’s. Thus

X×Y has a finite cover by such sets. Since each Vδ×Wδ is a subset of some Uγ , X×Y
has a finite cover by Uγ ’s. Thus X × Y is compact.
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Remarks. Given topological spaces X,Y, Z, the product X × Y × Z is homeomorphic
to X × (Y × Z) under the obvious map (since a base for the topology of X × Y × Z
consists of subsets U × V ×W , and a base for the topology of X × (Y × Z) consists of
subsets U × (V ×W ), for U open in X, V open in Y and W open in Z. Hence open
sets in X × Y × Z correspond to open sets in X × (Y × Z).) By induction, the above
theorem implies that the product of finitely many compact spaces is compact.

Now applying corollary 4.10, we see that [−M,M ]n is a compact subset of Rn. The
proof of the same corollary may be extended to show that X ⊆ Rn is compact if and
only if X is closed and bounded.

Proposition 4.16. Let X be a compact metric space, Y a metric space and f : X → Y
a continuous map. Then f is uniformly continuous; that is, given ε > 0, there exists
δ > 0 such that for all x, y ∈ X, dX(x, y) < δ implies dY (f(x), f(y)) < ε.

Proof. Since f is continuous, for all x ∈ X, there exists δx such that dX(x, y) < 2δx
implies dY (f(x), f(y)) < ε/2. Now let

Ux =
{
y : dX(x, y) < δx

}
.

The Ux form an open cover of X, and so there exist x1, . . . , xn such that X =
⋃n
i=1 Uxi .

Let δ = min{δxi}.

Suppose now dX(y, z) < δ; since the Uxi form a cover, we can find xi such that d(y, xi) <
δxi . Since dX(y, z) < δ < δxi , we deduce that dX(z, xi) < δ+ δi < 2δi (from the triangle
inequality). Thus

dY (f(y), f(z)) < dY (f(y), f(xi)) + dY (f(xi), f(z)) < ε/2 + ε/2 = ε.

4.2 Sequential compactness

Definition. A topological space is sequentially compact if every sequence in X
has a convergent subsequence.

Remark. For general topological spaces, the property of compactness and sequential
compactness are independent; neither implies the other.

Proposition 4.17. Any compact metric space is sequentially compact.

Notice that this can be reduced to the Bolzano-Weierstrass theorem: namely, that any
closed bounded subset of Rn is sequentially compact.

Proof. Suppose (X, d) is a metric space and (xn)∞n=1 is a sequence in X with no conver-
gent subsequence (in particular, there are infinitely many distinct xn). We claim that
for all x ∈ X, there exists δ > 0 such that d(x, xn) < δ for at most finitely many n.

If not, then there exists x ∈ X such that for all m > 0 in N, d(x, xn) < 1/m for
infinitely many n, and hence there is a subsequence of (xn) converging to x, which is a
contradiction.

For each x, pick such a δ = δ(x) and let Ux = {y : d(x, y) < δ}. Each Ux contains xn
for only finitely many n. But {Ux : x ∈ X} is an open cover for X, for which no finite
subcover can exist. Hence X is not compact.
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Exercise 4.18. Show directly that if X ⊆ Rn is sequentially compact, then it is
bounded, closed and hence compact. (Bounded, since otherwise we can find (xn)
such that d(xn, x0) > n, which implies that there is no convergent subsequence.)

More generally, we have:

Theorem 4.19

Suppose (X, d) is a sequentially compact metric space. Then

(i) Given any ε > 0, there exists x1, . . . , xn such that X =
⋃n
i=1B(xi, ε);

(ii) Given any open cover U of X, there exists ε > 0 such that for all x ∈ X,
B(x, ε) is contained in some element U of U .

(iii) (X, d) is compact.

Proof.

(i) Suppose not. Then by induction, we can construct a sequence (xn) in X such that
d(xm, xn) ≥ ε for all m 6= n. Clearly such a sequence has no convergent subse-
quence, since no subsequence can satisfy the Cauchy condition. Contradiction.

(ii) Suppose not. Then there exists an open cover U of X such that for all n, there
exists xn ∈ X such that B(xn, 1/n) 6⊆ U , for all U ∈ U . But (xn) has a subsequence
(xn(r)) tending to x ∈ X. So let x ∈ U0, for some U0 ∈ U . Since U0 is open, there
exists m > 0 such that B(x, 2/m) ⊆ U0.

x

xn(r)

B(x, 2/m)

B(x, 1/m)

B(xn(r), 1/n(r))

Now, there exists N such that xn(r) ∈ B(x, 1/m) for all r ≥ N . Additionally, if
n(r) > m, and y ∈ B(xn(r), 1/n(r)), then d(x, y) ≤ d(x, xn(r)) + d(xn(r), y) < 2/m.
So for such n(r), B(xn(r), 1/n(r)) ⊆ B(x, 2/m) ⊆ U0. Contradiction.

(iii) Let UU be an open cover of X. Choose ε > 0 as in (ii). For this ε, using (i), there
exists x1, . . . , xn ∈ X such that X =

⋃n
i=1B(xi, ε). For each i, B(xi, ε) ⊆ Ui for

some Ui ∈ U , by (ii). Thus X =
⋃n
i=1 Ui, and X is compact.

End of notes
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